
On the Parallels between Paxos and Raft, and how to Port
Optimizations

Zhaoguo Wang
†‡
, Changgeng Zhao

∗
, Shuai Mu

⋄
, Haibo Chen

†‡
, Jinyang Li

∗

† Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University

‡ Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

∗ Department of Computer Science, New York University

⋄ Department of Computer Science, Stony Brook University

ABSTRACT
In recent years, Raft has surpassed Paxos to become the more pop-

ular consensus protocol in the industry. While many researchers

have observed the similarities between the two protocols, no one

has shown how Raft and Paxos are formally related to each other.

In this paper, we present a formal mapping between Raft and Paxos,

and use this knowledge to port a certain class of optimizations from

Paxos to Raft. In particular, our porting method can automatically

generate an optimized protocol specification with guaranteed cor-

rectness. As case studies, we port and evaluate two optimizations,

Mencius and Paxos Quorum Lease to Raft.

KEYWORDS
Paxos, Raft, optimization porting

ACM Reference Format:
Zhaoguo Wang, Changgeng Zhao, Shuai Mu, Haibo Chen, Jinyang Li. 2019.

On the Parallels between Paxos and Raft, and how to Port Optimizations.

In 2019 ACM Symposium on Principles of Distributed Computing (PODC’19),
July 29–August 2, 2019, Toronto, ON, Canada. ACM, New York, NY, USA, 10
pages. https://doi.org/10.1145/3293611.3331595

1 INTRODUCTION
Consensus protocols enable servers to reach agreement on the

sequence of operations to execute despite the failure of some servers

and arbitrary network delays. Classic Paxos [18] is one of the oldest

and most well-studied consensus protocols. However, in recent

years, Raft [31] has gradually overtaken Paxos as the consensus

protocol of choice, esp. in the industry. Many researchers have

observed that Raft and Paxos bear certain similarities. However,

no one has shown how the two protocols are related in the formal

sense. In fact, does such a formal relationship exist?

While it may seem like a pedantic endeavor, investigating a for-

mal mapping between Raft and Paxos is meaningful for two reasons.

First, making the connection between Raft and Paxos helps deepen

our understanding of both protocols. In particular, it allows us to

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6217-7/19/07. . . $15.00

https://doi.org/10.1145/3293611.3331595

articulate what design decisions have made Raft more understand-

able or more efficient than Paxos. Second, Paxos is not an isolated

protocol but consists of a large family of variants and optimizations

as a result of almost two decades of research [16, 7, 25, 22, 29, 28].

These Paxos variants range from reducing latency for wide-area

operation, balancing replica load, optimizing for mostly-conflict-

free workload, to tolerating Byzantine faults. Knowing how Raft

relates to Paxos allows one to port some of these optimizations to

Raft without having to reinvent the wheel.

In this paper, we attempt to make a formal connection between

Raft and Paxos using refinement mapping. We show that, beyond

the broad stroke similarities between the two protocols, Raft differs

from Paxos in several subtle details, such as allowing a follower

to erase extra entries if its log is longer than the leader. Unfortu-

nately, these differences between the two protocols prevent a direct

refinement mapping between them. Therefore, we craft a variant

of Raft, called Raft*, which is a refinement of Paxos by removing

these superficial differences.

We use the refinement mapping between Raft* and Paxos to

port existing ideas in the Paxos literature to the world of Raft.

Specifically, we develop an automatic porting method which is

able to port a certain class of Paxos optimizations to Raft*. The

specific class of optimizations that can be ported automatically

are those that do not mutate the original state in Paxos. For these

optimizations, we derive the set of rules for applying them to Raft*,

such that the resulting protocol automatically refines Raft* and the

Paxos optimization, thus guaranteeing correctness. As Raft* is very

similar to Raft, the derived protocol contains all Raft properties

and is improved by the Paxos optimization. As case studies, we

choose two published Paxos optimization, Mencius [25] and Paxos

Quorum Lease [28], each of which improves one or more aspects

of Paxos in terms of load-balancing and latency. We have ported

these two protocols to Raft*.

We evaluate the performance benefits of our Raft* optimizations

on Amazon AWS in a setup where data is replicated across sev-

eral geographically separated data centers. For each optimization,

we show that the Raft variant has similar benefits as its Paxos

counterparts in the literature.

To summarize, we make the following contributions:

• We reveal the formal relationship between Raft and Paxos

by showing a refinement mapping between Paxos and Raft*,

a close variant of Raft (Section 3).

• We define the problem of porting optimizations across proto-

cols and develop a methodology for automatically porting a

https://doi.org/10.1145/3293611.3331595

restricted class of optimizations from one protocol to another

(Section 4)

• We port Mencius and Quorum Lease from Paxos to Raft and

provide experimental evaluation of the optimized versions

of Raft protocols (Section 6)

Limitations. This paper represents a first attempt at automati-

cally porting optimizations from one family of protocols to another

related one. Our method has several limitations that limit its appli-

cability. First, in order to port optimizations, we have to provide a

refinement mapping between the two related protocols. As such,

we can only automatically port optimizations from Paxos to Raft*

instead of directly to Raft. Second, only a certain restricted class

of optimizations can be automatically ported. Specifically, such

optimizations must not mutate protocol state (Section 4.2). Last,

optimization porting is done at the level of protocol specification,

not implementation. Programmers still need to implement a derived

protocol manually.

2 OVERVIEW
2.1 Background
Paxos [18]. Paxos solves the consensus problem using a bottom-

up approach. First, single-decree Paxos is developed to let servers

agree on a single value. Then, MultiPaxos builds upon single-decree

Paxos to agree on a sequence of operations.

In single-decree Paxos, servers reach consensus via a two-phase

protocol. In phase-1, a server picks a globally unique proposal

number (called ballot) and sends a Prepare RPC to every server. A

server receiving a Prepare replies success if it has not seen a higher

ballot. In its reply, the server includes the highest ballot it has ever

accepted, or null if it has never accepted any ballot. If the proposing
server receives at least a majority of successful replies, it goes into

the second phase, otherwise, it retries with a higher ballot.

In phase-2, the server picks the value for its ballot and sends it

in an Accept RPC to every server. This can be any value (usually

the operation the server wants to initiate) if the phase-1 replies do

not contain any previously accepted value; Otherwise, it must be

the value (an operation initiated by some other server) with the

highest ballot in the replies. A server receiving the Accept RPC will

accept this value and reply success if it has not seen a higher ballot.

If the proposing server receives a majority of successful replies, it

considers this value as chosen (or equivalently, committed). It could
notify other servers of the committed operation immediately or

piggyback this information with subsequent communication.

MultiPaxos builds upon single-decree Paxos to agree on a se-

quence of operations. In particular, MultiPaxos tries to agree on

the operation for each position in the sequence using a separate

instance of Paxos. MultiPaxos also optimizes performance by al-

lowing concurrent instances and batching the phase-1 messages of

these instances. Figure 1 gives the pseudocode of MultiPaxos. In

the rest of the paper, Paxos refers to the multi-decree version of

Paxos and single-decree Paxos refers to the single-decree version.

Raft [31]. Unlike Paxos’ bottom-up approach, Raft solves the

consensus problem in a top-down manner, by replicating a log of

operations across servers without decomposing into single-decree

consensus. The Raft protocol consists of two parts: electing a leader

and replicating of log entries by the elected leader. Each server

maintains a term number that monotonically increases. For leader

election, a candidate server increments its term number and sends

RequestVote RPCs to all servers to collect votes for itself to become

a leader. Elections are ordered by their corresponding term numbers

and a node rejects RequestVote if it has already processed a request
with a higher term or the same term from a different candidate. Raft

also adds another restriction to leader election: a node rejects Re-
questVote if its log is more recent than the sender’s log. A candidate

becomes the elected leader for this term if it receives a majority

quorum of successful votes on its RequestVote RPCs.
The elected leader batches client operations and replicates them

to all other servers (called followers) using the AppendEntries RPC.
A server rejects the AppendEntries request if it has seen a higher

term than the sender. The AppendEntries RPC also lets the receiver

synchronize its log with the sender: the receiver catches up if it is

missing entries, and it erases extraneous entries not found in the

sender’s log. The leader considers the operations in AppendEntries
committed if a majority quorum of servers successfully replies.

Figure 2 shows the pseudocode of Raft (ignoring the code in blue).

2.2 Our approach
At first glance, Raft bears many similarities to Paxos. Both protocols

have two phases. Raft’s RequestVote corresponds to Phase1a in

Paxos. Both RequestVote and Phase1a are considered successful

if a majority of ok replies are received. Afterward, Raft uses Ap-
pendEntries to replicate operations to other servers, similar to how

Paxos uses Phase2a to disseminate an operation associated with a

specific single-decree instance. In both protocols, a server rejects

the AppendEntries/Accept request if it has seen a higher term/ballot

and the operation is considered committed only when a majority

of servers return ok.
Our work uses refinement mapping [1] to formally capture the

connection between Paxos and Raft. Refinement mapping is com-

monly used to prove that a lower-level specification correctly im-

plements a higher-level one. For example, existing work [36] has

mapped Paxos, Viewstamp Replication and ZAB to a high-level

abstract consensus algorithm instead of directly relating them to

each other. By contrast, to shed the light on the relationship be-

tween Paxos and Raft, we attempt to provide a refinement mapping

between the two protocols directly.

It turns out that there are subtle differences that make it im-

possible for Raft to have a direct refinement mapping to Paxos.

Nevertheless, we can modify Raft slightly to remove these superfi-

cial differences and create a close variant protocol (called Raft*). By

showing the refinement mapping from Raft* to Paxos, we illuminate

the connection between Raft and Paxos.

Beyond providing a deeper understanding of protocols, can the

refinement mapping between Raft* and Paxos be used for some

practical purposes? Guided by this question, we proceed to explore

how to migrate optimizations done for Paxos to work for Raft.

Based on the refinement mapping, we develop a method to port cer-

tain Paxos optimizations to Raft* such that the resulting protocol’s

correctness is guaranteed. Specifically, some Paxos optimization

only reads but does not mutate Paxos’ state variables. The intuition

is to port these optimizations by replacing Paxos variables with

Raft* variables according to the refinement mapping. For example,

1 function Phase1a(s):
2 s.ballot = s.ballot + 1
3 unchosen = smallest unchosen instance id
4 s sends <‘prepare’, s.ballot, unchosen> to all
5

6 function Phase1b(s):
7 if s receives <‘prepare’, b, unchosen>
8 && b > s.ballot
9 then
10 s.ballot = b
11 s.phase1Succeeded = false
12 reply <‘prepareOK’, s.ballot,
13 instances with id ≥ unchosen>
14

15 function Phase1Succeed(s):
16 if s receives <‘prepareOK’, b, instances>
17 from f + 1 acceptors with the same b
18 && b == s.ballot
19 then
20 start = smallest unchosen instance id
21 end = largest id of received instances
22 for i in start ... end
23 s.instances[i]= safeEntry(received
24 instances with id i)
25 s.phase1Succeeded = true

(a) Phase 1

-

26function Phase2a(s, i, v):
27if s.phase1Succeeded
28&& (s.instances[i].val == v
29|| s.instances[i] == Empty)
30then
31send <‘accept’, i, v, s.ballot> to all
32

33function Phase2b(s):
34if s receives <‘accept’, i, v, b> && b ≥ s.ballot
35then
36if b > s.ballot
37then
38s.phase1Succeeded = false
39s.ballot = b
40s.instances[i].bal = b
41s.instances[i].val = v
42reply <‘acceptOK’, i, v, b>
43

44function Learn(s):
45if s receives same <‘acceptOK’, i, v, b>
46from f + 1 acceptors
47then
48s.instances[i].val = v
49s.instances[i].bal = b
50add s.instances[i] to s.chosenSet

(b) Phase 2

Figure 1: MultiPaxos

considering an add-on checkpointing mechanism for Paxos which

saves both system state and last applied instance id. According to

the refinement mapping, the instance id is mapped to the log index.

Thus, when porting the checkpoint mechanism to Raft*, we can

replace the last applied instance id with the last applied index in

the log with guaranteed correctness.

3 CONNECTING RAFT TO PAXOS
Refinement mapping. We use refinement mapping to describe

the equivalence between two protocols. Intuitively, in order to show

that a protocolB refines a protocolA, we must show that how each

state of in B’s state space can be mapped to some state inA’s state

space such that any state transition sequence in B corresponds

to a valid state transition sequence in A under the mapping. This

intuitive definition of refinement mapping suffices for this section.

In later sections (Section 4), we present a more formal definition of

refinement mapping used for optimization porting.

Why Raft cannot be mapped to Paxos directly. Ideally, we
should be able to directly refine Raft to Paxos. Unfortunately, this

cannot be done for two reasons. First, Raft forces all servers that

accept the leader’s AppendEntries to match the leader’s log. There-

fore, if a follower’s log is longer than that of the leader, the follower

will erase the extra entries. When mapped to MultiPaxos, such an

“erasing” step would correspond to a server deleting a previously ac-

cepted value for some Paxos instance, a state transition that would

never happen in Paxos. Raft makes the erasing step safe by commit-

ting log indexes in order so that its phase-1 exchange ensures that

the leader’s log contains all potentially committed entries. By con-

trast, Paxos commits instances out of order. Thus Paxos’ proposing

server must fetch safe values for different uncommitted instances

from other servers and never erase (but only overwrite) accepted

values at other servers. Second, the term number in each log entry

in Raft cannot be mapped to the accepted ballot number of each

instance in Paxos. The reason is Raft’s leader never modifies its

existing log entries. As a result, a newly elected leader at term

t would replicate a previously uncommitted log entry with term

t ′ < t without any change. Such a behavior has no equivalence

in Paxos. The proposing server in Paxos always over-writes the

accepted instance’s ballot number with its current ballot number.

Not changing the log entry’s term number turns out to have subtle

correctness implications such that the Raft paper ([31] Section 5.4.2)

has to add an extra rule to prevent the loss of committed values.

Raft*.We modify Raft slightly to create a close variant, called

Raft*, for which a refinement mapping to Paxos exists. Figure 2

shows the specification of Raft* in pseudocode (including code in

blue). Raft* is identical to Raft, except for two introduced differences,

based on the two reasons for why Raft cannot be shown to refine

Paxos. First, when responding ok to a candidate’s RequestVote, a
server includes all the extra entries not present in the candidate’s

log in its reply (line 68-69). The leader chooses the safe values

among its majority quorum of replies to extend its log (line 77-81).

An acceptor rejects leader’s append request if its log is longer than

the leader’s (line 110). Second, a ballot field is added to each entry.

On appending a new entry, Raft* will change all entries’ ballot to

be the new entry’s term (line 99-100).

Refining Paxos with Raft*. Figure 3 gives the refinement map-

ping between Raft* and Paxos. Most of them are straightforward.

For example, the Raft’s entries whose indexes are not greater than

commitIndex (committed entries) are mapped to Paxos’s instances

in the chosenSet (chosen instances). We only explain the nuances

mappings. First, most messages in Raft* do not have the same

content with its counterparts in Paxos. For instance, requestVote in-
cludes lastIndex and lastTerm instead of the smallest id of unchosen

instance. This is because, if two logs have the entries with the same

52 // s starts an election for the new leader
53 function RequestVote(s):
54 s.currentTerm = s.currentTerm + 1
55 s sends <‘requestVote’, s.currentTerm, s.lastIndex,
56 s.log[s.lastIndex].term> to all
57

58 // s receives leader election request
59 function ReceiveVote(s):
60 if s receives <‘requestVote’, term, lastIndex, lastTerm>
61 && term > s.currentTerm
62 && s.log[lastIndex].term < lastTerm
63 || (s.log[lastIndex].term = lastTerm
64 && s.lastIndex ≥ lastIndex)
65 then
66 s.currentTerm = term
67 s.isLeader = false
68 extraEnts = non-empty entries in s.log after lastIndex
69 reply <‘requestVoteOK’, s.currentTerm, extraEnts>
70

71 // s becomes the new leader in the vote phase
72 function BecomeLeader(s):
73 if s receives <‘requestVoteOK’, term, ents> from f + 1
74 acceptors with same term && term == s.currentTerm
75 then
76 max = largest index of received entries
77 for i in s.lastIndex + 1 ... max
78 e = safeEntry(received entries of index i)
79 s.log[i].bal = s.currentTerm
80 s.log[i].term = s.currentTerm
81 s.log[i].val = e.val
82 s.isLeader = true
83 s.lastIndex = max
84

85

86

87

88

89

90

(a) Phase 1

-

91// s appends vals to the log from i and
92// broadcasts all entries after prev to replicas
93function AppendEntries(s, i, vals , prev):
94if s.isLeader && i == s.lastIndex + 1 then
95for each v in vals
96s.log[s.lastIndex +1]. val = v
97s.log[s.lastIndex +1]. term = s.currentTerm
98s.lastIndex = s.lastIndex + 1
99for i in prev + 1 ... lastIndex
100s.log[i].bal = s.currentTerm
101ents = s.log entries after prev
102pTerm = s.log[prev].term
103send <‘append’, s.currentTerm, prev, pTerm, ents,

s.commitIndex> to all
104

105// s receives append request from the leader
106function ReceiveAppend(s):
107if s receives <‘append’, term, prev, pTerm, ents, commit>
108&& term ≥ s.currentTerm
109&& s.log[prev].term == pTerm
110&& s.lastIndex ≤ prev + length(ents)
111then
112if term > s.currentTerm then
113s.isLeader = false
114s.currentTerm = term
115s.lastIndex = prev + length(ents)
116s.commitIndex = max(commit , s.commitIndex)
117replace entries after s.log[prev] with ents
118reply <‘appendOK’, s.currentTerm, s.lastIndex>
119

120// the leader s learns the committed entries
121function LeaderLearn(s):
122if s receives <‘appendOK’, term, index> from f acceptors with

the same term
123&& s.isLeader
124&& term == s.currentTerm
125then
126minIndex = minimal received index
127s.commitIndex = max(s.commitIndex , minIndex)

(b) Phase 2

Figure 2: Raft*. The code in blue is introduced by Raft*

term at a given index, then these two logs are identical before the

given index (log matching property). Furthermore, Raft is able to

use the last entry’s term (lastTerm) to detect if every entry in a log

is more up-to-date. Second, Raft*’s leader directly appends entries

into the log in AppendEntries and BecomeLeader. This can be con-

sidered as implicitly sending an append to itself, then receiving an

appendOk from itself. Both explicit and implicit append/appendOk
can imply accept/acceptOk. Last, a Raft*’s function may imply mul-

tiple functions in Paxos. For example, AppendEntries implies both

Phase2a and Phase2b: the leader first implicitly accepts the entry,

then sends it to others. The formal specification and the proof of

the refinement mapping can be found in [37].

4 A METHOD FOR PORTING OPTIMIZATION
In this section, we show how to automatically port certain Paxos op-

timizations to Raft* by leveraging their refinement mapping. First,

we define the problem of optimization porting formally (Section 4.1).

We then characterize precisely which class of optimization is amica-

ble to our method (Section 4.2). Lastly, we describe the algorithm to

port the optimization such that the derived protocol specification

is guaranteed to be correct (Section 4.3).

4.1 Problem definition
Specifying a protocol. To automatically port some optimization

across protocols, we must describe a protocol and its optimization

in a formal way.We specify a protocol as a state machine, which can

be defined by its initial state and a set of allowed state transitions.

We use the TLA
+
language [19] for specifying state machines.

In TLA
+
, one specifies a protocol by describing the set of allowed

state transitions called the Next action, represented as a collection

of subactions a1 ∨ a2 ∨ ... where ∨ is the or (disjunction) operator.

Each subaction ai is a formula in conjunctive formwith one or more

clauses; the clauses specify the state transition’s enabling conditions

and the next state value. As an example, we consider a key-value

store supporting two operations Put(k, v) and Get(k). Figure 4a

shows its TLA
+
specification. The key-value store’s internal state is

a hash table (table) where each entry corresponds to a set. Its next-

state action (Next) consists of two subactions Put(k,v) and Get(k),
for each potential key and value. In Figure 4a, the subaction Put(k,
v) is defined to equal (

∆
=) to the boolean formula asserting that the

hash table entry for key k must contain value v in the next state

(line 2). In TLA
+
, attaching the ’ symbol with a variable represents

its value in the new state. Hence the formula table’[k]={v} is true
only when the hash table entry for key k in the next state equals to

variables

Raft* MultiPaxos
Constant Quorums Quorums

per server

currentTerm ballot
isLeader phase1succeeded

entries with index ≤ chosenSet
commitIndex

per instance

entry.index instance.id
entry.val instance.val
entry.bal instance.bal

messages

requestVote prepare
requestVoteOK prepareOK
(im/ex) append accept

(im/ex) appendOK acceptOK

functions

RequestVote Phase1a
ReceiveVote Phase1b

BecomeLeader Phase1Succeed
Phase2a
Phase2b

AppendEntries Phase2a
Phase2b

ReceiveAppend Phase2b
LeaderLearn Learn

Figure 3: Mapping between Raft* and MultiPaxos. “im”
stands for implicit. “ex” stands for explicit

v. We use the output variable to represent value returned to users,

thus Get(k) uses the clause output’ = table[k] to assert the value

of the output variable in the new state. In this example of A, there

is no subaction involving more than one clause in the conjunctive

form because there is no enabling conditions for either Put or Get.
We will see more sophisticated subactions in subsequent examples.

Refinement mapping with TLA+. Using TLA+ specifications,
we can formally describe the refinement mapping. We use B ⇒ A

to refer thatB has a refinement mapping toA. (e.g., Raft*⇒ Paxos).

Let VarA (or VarB) represent the state variables of A (or B). To

prove B ⇒A, we need to find some function f that maps B’s state

space to A’s, i.e., VarA = f (VarB). Suppose ai is some subaction

in A, we use the term ai to refer to the conjunctive formula when

we substitute VarA in ai with VarA = f (VarB). If B refines A

under f , then every subaction bi in B implies some subaction aj
in A or a no-op step

1
, i.e. bi ⇒ aj ∨ f (Var′

B
) = f (VarB), where

⇒ is the boolean operator for implication.

Figure 4b shows an example protocol B which stores data in a

log. SubactionWrite(i, v) stores a value at the end of the log at index
i. The conjunctive clause at line 2 ensures the invariant that values
are stored in the log continuously. Subaction Read(i) reads the log
entry i. Protocol B in Figure 4b refines protocol A in Figure 4a

under the state mapping that maps the i-th entry of the log to the

hash table entry with key k = i . The subactionWrite in B implies

Put inA, and Read implies Get. The formal proof of the refinement

between A and B can be found in [37].

Defining the problem of porting optimization. Informally,

given two protocolsA andB,B⇒A, we would like to adapt some

existing optimization on protocol A to also work for protocol B.

More importantly, we require the adaption to follow an algorithmic

1
The no-op step is commonly called a stuttering step [1, 23]

(instead of manual) procedure that can guarantee the correctness

of the resulting protocol.

To state the task formally, we are given some protocol A, its

optimized versionA∆
, and another protocol B which refinesA, all

specified in TLA
+
. Furthermore, we assume that all three protocols

A, A∆
, B have been proven correct. The problem of porting an

optimization is to automatically derive the TLA
+
specification of

protocol B∆
such that B∆

improves the performance of B and is

guaranteed to be correct. We note that the goal is to derive the

TLA
+
specification of an optimized protocol, not to automatically

generate the implementation of the optimized protocol.

The optimization porting problem as stated above is quite gen-

eral. In particular, we do not make any assumptions on the types

of correctness proofs given for the protocols, nor on any formal

relationships between A and A∆
. However, in order to make the

problem trackable, we devise a solution that only applies to a re-

stricted class of optimization, which is described next.

4.2 Non-mutating optimization
Given protocol A and its optimized variant A∆

, we consider the

optimization to be the difference between the specification of A∆

and A. In particular, the state variables of A∆
include all state

variables of A and may contain additional variables introduced by

the optimization. Each subaction of A∆
can be of three forms:

• An added subaction. This is a subaction that has no relation-

ships to existing subactions in A.

• An unchanged subaction. This is a subaction that is identical

to an existing subaction in A.

• A modified subaction. This is a subaction derived from an

existing subaction inA by adding extra conjunctive clauses.
2

Our proposed method for porting an optimization works for a

restricted class of optimizations, which we refer to as non-mutating
optimization. For an optimization A∆

to be considered as non-

mutating, we require that none of its added subactions and none

of the added clauses in its modified subactions mutate the state

variables of A (VarA). The subactions are free to mutate the new

state variables (Var∆) added by A∆
.

Figure 4c shows protocol A∆
, as an example of non-mutating

optimization on the key-value store protocol A. The optimized

protocol A∆
adds a new state variable size that tracks how many

values have been stored in the hash table. Comparing Figure 4c with

Figure 4a, we can see thatA∆
adds the new clause (line 4) to existing

subaction Put and no new subactions. As the new clause does not

modify A’s state (table), A∆
is a non-mutating optimization.

Non-mutating optimization not only allows us to port optimiza-

tion from A to B using the method in Section 4.3, it also has the

added benefit thatA∆
can be shown to refineA under the identical

state mapping function that ignores the extra state. Therefore, non-

mutating optimization always guarantees correctness. By contrast,

state-mutating optimization may or may not have a refinement

mapping to A, and thus its correctness requires a separate proof.

1: variables table, output

2: Put(k, v)

∆
= table’[k] = {v}

3: Get(k)

∆
= output’ = table[k]

4: Init ∆
= ∀ k ∈ Nat: table[k] = {}

5: Next ∆
= ∃ k ∈ Nat, v∈ Values: Put(k, v) ∨ Get(k)

(a) A key-value store (A).

1: variables logs, output

2: Write(i, v)

∆
= (i = 0 ∨ logs[i-1] , {})

3: ∧ logs’[i] = v

4: Read(i)

∆
= output’ = logs[i]

5: Init ∆
= ∀ i ∈ Nat : logs[i] = {}

6: Next ∆
= ∃ i ∈ Nat, v ∈ Values: Write(i, v) ∨ Read(i)

(b) The protocol B that stores data in a log. B refines the key-value
store A.

1: variables table, output, size

2: Put(k, v)

∆
= table[k] = {}

3: ∧ table’[k] = {v}

4: ∧ size’ = size + 1

5: Get(k)

∆
= output’ = table[k]

6: Init ∆
= ∀ k ∈ Nat: table[k] = {} ∧ size = 0

7: Next ∆
= ∃ k ∈ Nat, v ∈ Values: Put(k, v) ∨ Get(k)

(c) The optimized protocol A∆.

1: variables logs, output, size

2: Write(i, v)

∆
= logs[i] = {}

3: ∧ (i = 0 ∨ logs[i-1] , {})

4: ∧ logs’[i] = {v}

5: ∧ size’ = size + 1

6: Read(i)

∆
= output’ = logs[i]

7: Init ∆
= ∀ k ∈ Nat: logs[i] = {} ∧ size = 0

8: Next ∆
= ∃ i∈ Nat, v ∈ Values: Write(i, v) ∨ Read(i)

(d) The generated TLA+ specification of B∆.

Figure 4: The TLA+ specifications of the example.

A

A
∆

B

B
∆

is givenfA←B

By
 d

efi
ni

ti
on

 o
f

no
n-

m
ut

at
in

g
op

t

proven

p
ro

ve
n

Figure 5: The refinement mappings among given protocols.
A∆ is an optimized version of A using non-mutating opti-
mization. B∆ is the optimized version of B generated by our
method in Section 4.3.

4.3 How to port non-mutating optimization
We only consider the case of porting non-mutating optimizations.

Additionally, if the optimization reads the parameters of protocol

A, our method also requires a parameter mapping from B to A.

Parameter mapping. Let PA and PB be the parameter vari-

ables ofA and B, respectively. We say B has a parameter mapping

to A if there exists a function farд that maps the arguments of

subactions in B to the arguments of subactions in A, i.e. PA =
farдs (PB).

3
The extra clauses added in a modified subaction inA∆

may use parameter variables. Therefore, the parameter mapping is

required in order to correctly translate those clauses to be used in

a corresponding subaction in B∆
.

Porting the optimization. We are now ready to describe how

to transform the specification of A∆
to create B∆

, thereby porting

the optimization fromA to B. First, we obtain B∆
’s state variables

2
If the derivation deletes an existing conjunctive clause, then the resulting subaction

of A∆
must be viewed as an added subaction instead of a modified one.

3
To put it more formally, given parameter mapping PA = farдs (PB), we use

NextA to refer to the formula after substituting state variables Vara with f (Varb)
and parameter variables PA with farдs (B). farдs is a valid parameter mapping if

NextB ⇒ NextA .

as VarB∆ = VarB ∪ Var∆. We also obtain B∆
’s initial state (InitB∆)

from InitB and InitA∆ by replacing every state variable ofA using

the state mapping VarA = f (VarB). Next, we generate the sub-

actions of B∆
from each subaction a∆i of A

∆
and the no-op step.

There are three cases:

Case-1: a∆i is an added subaction. We turn a∆i into a correspond-

ing added subaction b∆i by substituting state variable Vara with

f (Varb) and keeping Var∆ unchanged.

Case-2: a∆i is an unchanged subaction which is equal to ai in A,

or the no-op step. There is a set of subactions in B that imply ai

according to the refinement mapping fB→A . We directly add the

set of subactions to B∆
.

Case-3: a∆i is a modified subaction of ai in A. Again, there is a

set of subactions in B that imply ai according to fB→A . Suppose
bj is a subaction in the set. We add bj to B

∆
if bj is not already

added (Case-2). Furthermore, we include the extra clauses added

by a∆i in bj by substituting Vara = f (Varb) and Pa = farдs (Pb).

Correctness.We prove that the generated specification of B∆

is correct. The proof contains two parts. First, we need to show

that B∆
correctly incorporates the optimization inA∆

. This can be

proven by demonstrating that B∆
refines A∆

, thus B∆
preserves

the invariants introduced by the optimization. Second, we also

need to show that B∆
remains correct w.r.t. the original protocol

B. This can be proven by demonstrating that B∆
refines B, thus

B∆
preserves the invariants of the original protocol B.

As a summary, Figure 5 illustrates the refinement mappings that

exist among the four protocols, A, B, A∆
, B∆

. Next, we provide

proof sketches for the refinement mappings of B∆
.

First, we prove that B∆
refines A∆

using the state mapping

function that maps the state variables of B to those of A accord-

ing to f and leaves the variables introduced by optimization ∆
unchanged. To prove the correctness of this refinement mapping,

we must show that B∆
’s initial state implies InitA∆ , and B∆

’s next-

state action (NextB∆) implies NextA∆ . The former implication is

relatively straightforward, so we focus the discussion on the latter.

To show NextB∆ implies NextA∆ , we show that eachB∆
’s subac-

tion (b
∆
i) implies some subaction of A∆

or a no-op step. According

to our method, b∆i can be added to B∆
in one of three cases. For

case-1 and 2, it is easy to show that b∆i implies a∆i or the no-op

step by construction. In case-3, b∆i is constructed from bi and a

subaction a∆j in A∆
, such that a∆j = aj ∧ ∆aj , b

∆
i = bi ∧ ∆aj . ∆aj

is the set of extra conjunctive clauses added by the optimization to

aj to form a∆j . ∆aj is obtained from ∆aj by substituting variables

Vara = fB→A (Varb) and parameters Pa by farдs (Pb). Because of

bi ⇒ aj , we have b
∆
i ⇒ aj ∧ ∆aj which is equivalent to b∆i ⇒ a∆j .

Next, we prove that B∆
refines B, using the state mapping func-

tion that simply drops the new variables added by the optimization.

To prove B∆
refines B, we argue that B∆

is a non-mutating opti-

mization by analyzing the three cases of our method. We leave the

details to [37].

5 PORTING PAXOS OPTIMIZATION TO
RAFT*.

The landscape of Paxos variants and optimization. We first

study existing Paxos variants and optimizations using the lens of our

method. Figure 6 shows the relationship between these protocols.

Among them, six protocols belong to the class of non-mutating

optimization for Paxos, shown in the double-lined box in Figure 6.

Thus, these six optimizations can potentially be ported from Paxos

to Raft* using our method. Flexible Paxos [11] relaxes the majority

quorum restriction in Paxos to allow differently sized quorums as

long as the quorums used in the two phases of Paxos exchange are

guaranteed to intersect. As a result, Paxos refines Flexible Paxos but

not the other way around. WPaxos [3] is a recently proposed non-

mutating optimization on Flexible Paxos. Therefore, our method

could also be used to port the optimization of WPaxos to Paxos.

As for the rest of the protocol variants (shown in the left-most

box in Figure 6), their relationships to Paxos cannot be captured

by refinement mapping. The reasons for the lack of refinement

mapping are varied. For example, Fast Paxos changes the quorum

size of Paxos to include a super-majority, which prevents a refine-

ment mapping from Fast Paxos to Paxos. However, it also misses

state transitions allowed in Paxos, which precludes a refinement

mapping from Paxos to Fast Paxos.

Among the six candidate protocols, we choose to port two op-

timizations as case studies: Paxos Quorum Lease [28] and Men-

cius [25]. We explain what these optimizations are and how they

are ported to Raft*. Our discussion uses pseudocode instead of TLA
+

for simplicity. A more formal description (including the refinement

mapping, pseudocode, and TLA
+
) can be found in the extended

version of the paper [37].

Paxos Quorum Lease. In Paxos, a strongly consistent read op-

eration is performed by persisting the operation into the log as

if it were a write. Paxos Quorum Lease (PQL) [28] introduces an

optimization that allows any replica to read locally if the replica

holds leases from a quorum of replicas (quorum-lease).
Quorum-lease can co-exist perfectly with the quorum in Paxos.

Any replica can grant a lease. A replica considers itself holding

a quorum-lease if it holds leases from a quorum of replicas. Any

lease-quorum must overlap with any Paxos quorum (usually both

quorums are majorities of replicas). In Paxos any commit needs to

collect from a quorum of acknowledgments, which will intersect

with the lease quorum. Therefore, as long as we require every

replica in a Paxos quorum to notify their granted lease holders

before the replica commits any values, the system is safe—both

read and write are consistent.

PQL is a non-mutating variant of Paxos, because all its added

and modified subactions do not change the state variables in Paxos.

Figure 7 shows the algorithmic changes introduced by PQL. The

actions changed are Phase2b and Learn. In Phase2b, a server at-
taches all leases it granted with the “acceptOk” response (line 143).

By collecting the granted leases from a quorum (line 146), a learner

can find all servers who hold active leases (line 148), and commits

an instance only if it receives “acceptOk” from these holders (line

150). The added actions are Read and LocalRead. When a client

issues a “localRead” request, the server will return its local copy if it

holds valid leases granted by a quorum, and all committed updates

are in the chosen set (line 136-137).

Raft*-PQL. Figure 8 shows the algorithm after applying PQL

to Raft*. The code in blue shows the changed part after porting

the optimization to Raft*. For a replica to perform a local read,

the replica needs to check if two conditions hold. First, the replica

must be holding leases from at least f + 1 replicas (including itself).
Second, the replica needs to wait until commitIndex is greater than
the largest index of entries which modify the target record (line

156). This is transformed from PQL where all modifications must

be in the chosenSet (line 137).
A replica attaches the lease holders granted by itself in appendOk

message, which maps to the acceptOk message. In LeaderLearn,
the leader needs to collect the holders of leases attached in the

messages and granted by itself (line 165). This is because the f
appendOk messages with one extra implicit appendOk message

imply f + 1 acceptOk messages in Paxos. Thus, collecting leases

attached in f + 1 messages (line 148) is transformed into collecting

the leases from f messages and local granted (the implicit message).

Mencius. Paxos requires all clients requests to be sent to a leader
for better throughput. This could lead to unbalanced load between

the leader replica and other replicas. When replicas are located in

different data centers, non-leader replicas will need at least two

wide-area round-trips to commit any requests because requests

need to be forwarded to the leader. To address these issues, Men-

cius [25] partitions the Paxos instances so that each replica serves

as the default leader for a distinct subset of instances. With geo-

replicas, a client can send its requests to the nearest replica. The

replica can commit these requests using those Paxos instances for

which it is the default leader. Thus, Mencius can balance the load

among all replicas and also reduces wide-area round-trips.

Mencius partitions the instance (log) space in a round-robin

way. For example, in a system with three replicas r1, r2, r3, r1 is

the default leader for log entries (0, 3, 6, ...), r2 is the leader for

(1, 4, 7, ...), and r3 for (2, 5, 8, ...). Mencius separates the execution

of a log entry from its commit. The log is executed sequentially. If

some default leader has not received any user-submitted operations,

it commits skip entries to keep log execution progressing forward.

To prevent a crashed replica from delaying the system, the instances

belong to that replica can be committed as no-op by other replicas.

S-Paxos [5]
HT-Paxos [14]

Ring-Paxos [27]
Multi Ring-Paxos [26]

Mencius [25]
(Coordinated Paxos)

Paxos Quorum Lease [28]

EPaxos [29]
Disk Paxos [10]
Fast Paxos [16]

Cheap Paxos [22]
Vertical Paxos [21]
Ω Meets Paxos [24]

Stoppable Paxos [20]
Speculative Paxos [32]
Generalized Paxos [17]

Genuine Generalized Paxos [35]

Flexible Paxos [11]

Paxos [18]

Raft*

WPaxos [3]

Raft [31] VR [30]

Refinement MappingVariant Similar Non-mutating optimization

Figure 6: The relationship of different Paxos variants and optimization.

128 function Read(c, k):
129 c sends <‘localRead’, k> to 1 server s
130 if c receives <‘ReadReply’, v> from s
131 then
132 return v
133

134 function LocalRead(s):
135 if s receives <‘localRead’, k>
136 && s.validLeasesNum ≥ f + 1
137 && all instances modified k are in chosenSet
138 then
139 s replies <‘ReadReply’, LocalCopy(k)>
140

141 function Phase2b(s):
142 ...
143 s replies <‘acceptOk’,..., leases granted by s>
144

145 function Learn(s):
146 if s receives <‘acceptOk’, i, v, b, s, leases> from f + 1

acceptors
147 then
148 holderSet = holders of received leases
149

150 if s receives <‘acceptOk’, ... > from all holders in holderSet
151 then
152 ...

Figure 7: Paxos Quorum Lease

153 function LocalRead(s):
154 if s receives <‘localRead’, k>
155 && s.validLeasesNum ≥ f + 1
156 && indexes of entries in s.log modified k ≤ s.commitIndex
157 then
158 ...
159

160 function LeaderLearn(s):
161 if s receives <‘appendOK’, t, index, holders> from f acceptors
162 && s.isLeader
163 && s.currentTerm == t
164 then
165 holderSet = received holders ∪ holders of leases granted by

the leader
166 if s receives <‘appendOK’, ... > from all holders in holderSet
167 then
168 ...

Figure 8: Raft*-PQL

These optimizations help Mencius commit and execute requests

within 1.5 round-trips on average.

Raft*-Mencius. The complete pseudocode of Raft*-Mencius is

included in [37]. We describe some interesting details here. In addi-

tion to the Paxos state variables, each replica needs to keep an array

of “skip-tags” to track those log entries that can be skipped. When

a replica becomes the leader, it needs to collect not only values but

also skip-tags from other replicas. Because Phase2b action in Paxos

corresponds to many actions (AppendEntries, ReceiveAppend) in
Raft*, whatever changes Mencius makes to Phase2b should be ap-

plied to these actions as well. As an example, if the newly appended

entries are skip entries, they should be marked as executable.

Because Phase2b in Paxos is implied by multiple sub-actions in

Raft*, it is possible that manual efforts for porting Mencius may

miss some of the actions. For example, if the manual solution only

applies changes on Phase2b in Paxos to ReceiveAppend in Raft*

and miss AppendEntries, the solution could miss some optimization

opportunities or even result in an incorrect protocol.

6 EVALUATION
This section shows that the generated algorithms achieve similar

optimization effects with their Paxos counterparts [28, 25]. In partic-

ular, Raft*-PQL reduces the latency of read requests by performing

local read. Raft*-Mencius improves the throughput by balancing

the workload across all replicas. Our porting method guarantees

the correctness of these derived algorithms. However, the extra

effort is still needed for the implementation.

Testbed. The experiments were conducted on Amazon EC2

across 5 different geographical regions: Oregon, Ohio, Ireland,

Canada and Seoul. In each region, two m4.xlarge instances are

used for the client and server processes respectively. Each instance

has 4 virtual CPUs, 16GB memory and one SSD with 750 Mbps

bandwidth. The latency across sites varies from 25ms to 292ms.

Workload. Our evaluation uses closed-loop clients with a YCSB

alike workload: each client issues get or put requests back-to-back.

The system is initialized with 100K records. To simulate contention,

each client accesses the same popular record at a configured rate

(i.e., conflict rate). When not accessing the popular record, the key

space is pre-partitioned among the datacenters evenly, and a key is

selected from this partition with uniform probability. Raft*-PQL is

evaluated with 90% read by default. For Raft*-Mencius, we use a

workload with 100% writes. Each trial is run for 50 seconds with 10

seconds for both warm-up and cool-down. Each number reported

is the median in 5 trials.

Implementation. The implementation of Raft* is based on a

popular industrial Raft codebase—etcd (version c4fc8c09). Etcd has

a few important optimizations. First, it has a customized network

layer for efficient communication. Second, when a follower receives

multiple requests from clients, it forwards them to the leader in a

 0.1

 1

 10

 100

 1000

Leader Followers

L
a
te

n
c
y
 (

m
s
)

Raft*-PQL
Raft*-LL
Raft
Raft*

 0.1

 1

 10

 100

 1000

Leader Followers

L
a
te

n
c
y
 (

m
s
)

Raft*-PQL
Raft*-LL
Raft
Raft*

(a) Read latency

 0.1

 1

 10

 100

 1000

Leader Followers
L
a
te

n
c
y
 (

m
s
)

Raft*-PQL
Raft*-LL
Raft
Raft*

 0.1

 1

 10

 100

 1000

Leader Followers
L
a
te

n
c
y
 (

m
s
)

Raft*-PQL
Raft*-LL
Raft
Raft*

(b) Write latency

0k

50k

100k

150k

200k

50% 90% 99%

T
h

ro
u

g
h

p
u

t
(O

p
s
)

Read Percentage

Raft*-PQL
Raft*-LL
Raft
Raft*

0k

50k

100k

150k

200k

50% 90% 99%

T
h

ro
u

g
h

p
u

t
(O

p
s
)

Read Percentage

Raft*-PQL
Raft*-LL
Raft
Raft*

(c) Peak throughput

-20%

0%

20%

40%

60%

80%

0%10%20%30%40%50%

T
h

ro
u

g
h

p
u

t
s
p

e
e

d
 u

p

Conflict rate

Raft*-PQL vs. Raft*

(d) Speedup of Raft*-PQL over Raft

Figure 9: Raft*-PQL vs. LL vs. Raft. Each bar in (a) and (b) represents the 90th percentile latency of the requests with an error bar from

the 50th to 99th percentiles. The y-axis is in log scale for (a) and (b).

0K

10K

20K

30K

40K

50K

60K

0K 1K 2K 3K 4K 5K 6K 7K

T
h
ro

u
g
h
p
u
t
(O

p
s
)

Client number (per region)

Raft*-M-100%
Raft*-M-0%
Raft-Oregon
Raft*-Oregon
Raft-Seoul

(a) Throughput - 8B

0K

1K

2K

3K

4K

5K

 0 200 400 600 800 1000

T
h
ro

u
g
h
p
u
t
(O

p
s
)

Client number (per region)

Raft*-M-100%
Raft*-M-0%
Raft-Oregon
Raft*-Oregon
Raft-Seoul

(b) Throughput - 4KB

 0

 100

 200

 300

 400

 500

 600

 700

Raft-
Oregon

Raft*-
Oregon

Raft-
Seoul

Raft*-
M-0%

Raft*-
M-100%

L
a
te

n
c
y
 (

m
s
)

Leader
Followers

(c) Latency - 8B

 0

 100

 200

 300

 400

 500

 600

 700

Raft-
Oregon

Raft*-
Oregon

Raft-
Seoul

Raft*-
M-0%

Raft*-
M-100%

L
a
te

n
c
y
 (

m
s
)

Leader
Followers

(d) Latency - 4KB

Figure 10: Raft*-Mencius vs. Raft. Raft*-M-100% and Raft*-M-0% stand for Raft*-Mencius with workload under 100% and 0% conflict rate.

Raft-Oregon and Raft-Seoul stand for the leader is in Oregon or Seoul. 8B and 4KB are the request size of the workload.

batch. Such techniques improve system throughput when follower

servers accept client requests. In our tests, etcd is 2.4× better in

throughput when these optimizations are turned on. We keep these

optimizations on in our tests to give etcd extra advantages. Oregon

is used as the leader site for etcd which gives it the best result since

Oregon has the best network condition.

6.1 Raft*-PQL
We evaluate Raft*-PQL with the same lease parameters in [28]: the

lease duration is 2 seconds, is renewed for every 0.5 seconds. We

also compare Raft*-PQL with Leader Lease (LL). Here the leader

has sole ownership of the lease, so only the leader can process a

read request with its local copy. We use 90% read workload with

5% conflict rate by default.

Latency. First, we compare the latency with 50 clients per region.

In Raft*-PQL, any server with an active lease is able to conduct

local consistent reads, thus 90% of the read requests have only

1ms latency (Figure 9a). In comparison, for LL, only the leader can

process read request with similar latency (1.6 ms). Raft*-PQL has

1% read requests have high latency (∼137ms) on followers. This is

because 5% contention in the workload: followers need to wait for

conflicting write to commit before processing the read request. For

write latency (Figure 9b) Raft*-PQL is a little bit higher than others,

as it needs to wait for leaseholders’ acknowledge to commit a write

operation, while others can always choose the fastest majority.

Throughput. Figure 9c shows how is the peak throughput af-

fected by reading percentage (50%, 90%, and 99%). Raft, Raft* and

LL achieve almost the same peak throughput, as the leader’s CPU is

the bottleneck, and the saturated leader CPU has the same capabil-

ity to handle requests for these algorithms. In contrast, Raft*-PQL

achieves 1.6× and 1.9× speedup with 90% and 99% reads. The advan-

tage is from conducting the read requests locally. Figure 9d shows

how is the throughput speedup affected by the conflict rate. The fig-

ure does not show the speedup of Raft*-PQL over Raft*, as they are

similar. The speedup increases with the decreasing of conflict rate

since all followers can return read requests to the user immediately

under a low conflict rate.

6.2 Raft*-Mencius
We use a 100% put workload to measure Raft*-Mencius with 0% and

100% contention, marked as Raft*-Mencius-0% and Raft*-Mencius-

100% respectively. To make a fair comparison, we evaluate both the

best and worst case scenarios for Raft in the wide area by placing

the leader in the nearest (Oregon) and farthest (Seoul) servers to

all other regions (Raft-Oregon and Raft-Seoul). We only evaluate

Raft* with the leader at Oregon for reference.

Throughput. Figure 10a gives throughput when the system is

bounded by the CPU. Raft*-Mencius can achieve a peak through-

put of 55K operations per second (ops) since it balances the load

among all replicas. In contrast, other systems can reach the peak

throughput of 41K ops after their leaders’ CPUs are saturated. Fig-

ure 10b gives throughput when the system is network bounded.

Raft reaches the peak throughput after saturating leader’s network

bandwidth. Raft-Oregon has 30% higher throughput than Raft-Seoul

as Oregon has higher bandwidth. Raft*-Mencius has 70% higher

throughput than Raft-Oregon because it is able to utilize all replicas’

network bandwidth. In both figures, with a small number of clients,

Raft-Oregon and Raft*-Mencius-0% have better performance than

others due to their lower latency.

Latency. Figure 10c and Figure 10d show the latency with 50

clients per region. The leader of Raft-Oregon processes requests

with the lowest latency (79ms), as the quorum of Oregon, Ohio, and

Canada are closest to each other. In comparison, Raft*-Mencius-

100% has much higher 90% percentile latency, while Raft*-Mencius-

0% has lower latency because of the different contention levels.

7 RELATEDWORK
Elementary consensus protocols. In addition to Raft [31] and

Paxos [18], there are many alternative protocols. For example, View-

stamped Replication (VR) [30] was published earlier than Paxos,

and ZooKeeper [12] uses ZAB [13]. Our method is also suitable for

these protocols. In particular, we can connect these protocols with

Paxos by crafting a Raft* similar protocol.

Algorithm comparison. Renesse et al. [36] compared Paxos to

VR and ZAB using refinement mapping. Lamport[15] discuss the

equivalence between Byzantine Paxos and PBFT [7] is discussed.

Song et al. [34] identified common traits in the Paxos, Chandra-

Toueg [8], and Ben-Or [4] consensus algorithms. Abraham and

Malkhi [2] discussed the connections between BFT consensus pro-

tocols and block-chain protocols. Compared to these works, we

have two notable differences: we use a formal method TLA
+
[19] to

model the refinement mappings [1]; we have mechanically exported

the optimizations from one family of protocols to another.

Paxos variants and optimizations. Figure 6 has shown a num-

ber of Paxos variants. Among the non-mutating variants,WPaxos [3]

partitions object and use flexible quorums for geo-replication [11];

HT-Paxos [14] and S-Paxos [5] assigns ordering tasks to multiple

servers to remove bottlenecks. Ring Paxos [27] and Multi Ring-

Paxos [26] partition the workload and achieve better performance.

Among the mutating Paxos variants: Cheap Paxos [22] introduces

auxiliary servers. Ωmeets Paxos [24] elects a stable leader in a weak

network environment. NetPaxos [9] adapts Paxos to SDN. Stoppable

Paxos [20] is able to perform reconfiguration without slowing down.

Additionally, Shraer et al. [33] and Vertical Paxos [21] discusses how

to reconfigure a replicated state machine. Disk Paxos [10] achieves

consensus in a disk cluster. Fast Paxos [16] and Multi-coordinated

Paxos [6] introduce a fast quorum to reach consensus with a single

round-trip. Generalized Paxos [17], Genuine Generalized Paxos [35]

and EPaxos [29] resolve conflicts because execution. Speculative

Paxos [32] introduces speculative execution when messages are

delivered in order.

ACKNOWLEDGMENTS
We sincerely thank our anonymous reviewers for their insight-

ful comments. We thank Lamont Nelson for his help and Aurojit

Panda for his feedback on this work. This work is supported by

the National Key Research & Development Program of China (No.

2016YFB1000104), NSF grant CNS-1409942 and CNS-1514422, and

AFOSR FA9550-15-1-0302.

REFERENCES
[1] M. Abadi, and L. Lamport The existence of refinement mappings. Theoretical

Computer Science 82, 2 (1991).
[2] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman Solida: A

cryptocurrency based on reconfigurable byzantine consensus. In Proc. OPODIS.
2017.

[3] A. Ailijiang, A. Charapko, M. Demirbas, and T. Kosar WPaxos: Wide Area

Network Flexible Consensus. arXiv preprint arXiv:1703.08905 (2017).
[4] M. Ben-Or Another advantage of free choice (extended abstract): completely

asynchronous agreement protocols. In Proc. PODC. Aug. 1983.
[5] M. Biely, Z. Milosevic, N. Santos, and A. Schiper S-Paxos: offloading the

leader for high throughput state machine replication. In Proc. SRDS. Oct. 2012.
[6] L. J. Camargos, R. M. Schmidt, and F. Pedone Multicoordinated Paxos. In

Proc. PODC. Aug. 2007.
[7] M. Castro, and B. Liskov Practical byzantine fault tolerance. In Proc. OSDI.

Feb. 1999.

[8] T. D. Chandra, and S. Toueg Unreliable failure detectors for reliable dis-

tributed systems. JACM 43, 2 (Mar. 1996).

[9] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé Netpaxos: Con-

sensus at network speed. In Proceedings of the 1st ACM SIGCOMM Symposium
on Software Defined Networking Research. 2015.

[10] E. Gafni, and L. Lamport Disk paxos. DC (2003).

[11] H. Howard, D. Malkhi, and A. Spiegelman Flexible paxos: Quorum intersec-

tion revisited. arXiv preprint arXiv:1608.06696 (2016).
[12] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed ZooKeeper: wait-free coordi-

nation for internet-scale systems. In Proc. USENIX ATC. June 2010.
[13] F. P. Junqueira, B. C. Reed, and M. Serafini Zab: high-performance broadcast

for primary-backup systems. In Proc. DSN. June 2011.
[14] V. Kumar, and A. Agarwal HT-Paxos: high throughput state-machine repli-

cation protocol for large clustered data centers. The Scientific World Journal
(2015).

[15] L. Lamport Byzantizing Paxos by refinement. In Proc. DISC. July 2011.

[16] L. Lamport Fast Paxos. DC 19, 2 (Oct. 2006).

[17] L. Lamport Generalized consensus and Paxos. Tech. rep. MSR-TR-2005-33.

Microsoft Research, 2005.

[18] L. Lamport Paxos made simple. SIGACT 32, 4 (2001).

[19] L. Lamport Specifying systems: the TLA+ language and tools for hardware and
software engineers. Addison-Wesley Longman Publishing Co., Inc., 2002.

[20] L. Lamport, D. Malkhi, and L. Zhou Reconfiguring a state machine. ACM
SIGACT News (2010).

[21] L. Lamport, D. Malkhi, and L. Zhou Vertical Paxos and primary-backup

replication. In Proc. PODC. Aug. 2009.
[22] L. Lamport, and M. Massa Cheap Paxos. In Proc. DSN. June 2004.
[23] L. Lamport, and S.Merz Auxiliary variables in TLA+. arXiv preprint arXiv:1703.05121

(2017).

[24] D. Malkhi, F. Oprea, and L. Zhou Ω meets paxos: Leader election and stability

without eventual timely links. In Proc. DISC. 2005.
[25] Y. Mao, F. P. Junqueira, and K. Marzullo Mencius: building efficient replicated

state machines for WANs. In Proc. OSDI. Dec. 2008.
[26] P. J. Marandi, M. Primi, and F. Pedone Multi-ring paxos. In Proc. DSN. 2012.
[27] P. J. Marandi, M. Primi, N. Schiper, and F. Pedone Ring Paxos: A high-

throughput atomic broadcast protocol. In Proc. DSN. 2010.
[28] I. Moraru, D. G. Andersen, and M. Kaminsky Paxos quorum leases: Fast reads

without sacrificing writes. In Proc. SoCC. Nov. 2014.
[29] I. Moraru, D. G. Andersen, and M. Kaminsky There is more consensus in

egalitarian parliaments. In Proc. SOSP. Nov. 2013.
[30] B. M. Oki, and B. H. Liskov Viewstamped replication: A new primary copy

method to support highly-available distributed systems. In Proc. PODC. June
1988.

[31] D. Ongaro, and J. K. Ousterhout In search of an understandable consensus

algorithm. In Proc. USENIX ATC. June 2014.
[32] D. R. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krishnamurthy Designing

distributed systems using approximate synchrony in data center networks. In

Proc. NSDI. May 2015.

[33] A. Shraer, B. Reed, D. Malkhi, and F. P. Junqueira Dynamic reconfiguration

of primary/backup clusters. In Proc. USENIX ATC. June 2012.
[34] Y. J. Song, R. van Renesse, F. B. Schneider, and D. Dolev The building blocks

of consensus. In IEEE ICDCN. Jan. 2008.
[35] P. Sutra, and M. Shapiro Fast genuine generalized consensus. In Proc. SRDS.

Oct. 2011.

[36] R. Van Renesse, N. Schiper, and F. B. Schneider Vive la différence: Paxos vs.

viewstamped replication vs. zab. IEEE Transactions on Dependable and Secure
Computing 12, 4 (July 2015).

[37] W. Zhaoguo, Z. Changgeng, M. Shuai, C. Haibo, and L. Jinyang On the

parallels between Paxos and Raft, and how to port optimizations (Extended

Version). arXiv preprint arXiv:1905.10786 (2019).

	Abstract
	1 Introduction
	2 Overview
	2.1 Background
	2.2 Our approach

	3 Connecting Raft to Paxos
	4 A method for porting optimization
	4.1 Problem definition
	4.2 Non-mutating optimization
	4.3 How to port non-mutating optimization

	5 Porting Paxos optimization to Raft*.
	6 Evaluation
	6.1 Raft*-PQL
	6.2 Raft*-Mencius

	7 Related Work

