
Flexible Update Propagation for Weakly Consistent Replication

Karin Petersen, Mike J. Spreitzer, Douglas B. Terry,
Marvin M. Theimer and Alan J. Demers*

Computer Science Laboratory
Xerox Palo Alto Research Center

Palo Alto, California 94304 U.S.A.

Abstract
Bayou’s anti-entropy protocol for update propagation between weakly

consistent storage replicas is based on pair-wise communication, the
propagation of write operations, and a set of ordering and closure.
constraints on the propagation of the writes. The simplicity of the design
makes the protocol very flexible, thereby providing support for diverse
networking environments and usage scenarios. It accommodates a variety
of policies for when and where to propagate updates. It operates over
diverse network topologies, including low-bandwidth links. It is
incremental. It enables replica convergence, and updates can be
propagated using floppy disks and similar transportable media. Moreover,
the protocol handles replica creation and retirement in a light-weight
manner. Each of these features is enabled by only one or two of the
protocol’s design choices, and can be independently incorporated in other
systems. This paper presents the anti-entropy protocol in detail,
describing the design decisions and resulting features.

1. Introduction
Weakly consistent replicated storage systems with an “update

anywhere” model for data modifications require a protocol for
replicas to reconcile their state, that is, a protocol to propagate the
updates introduced at one replica to all other replicas. A key
advantage of weakly consistent replication is that, by relaxing
data consistency, the protocol for data propagation can
accommodate policy choices for when to reconcile, with whom to
reconcile, and even what data to reconcile. In this paper we
present Bayou’s anti-entropy protocol for replica reconciliation.
The protocol, while simple in design, has several features
intended to support diverse network environments and usage.
scenarios. The contribution of this paper is to demonstrate how
the anti-entropy design, based on pairwise-communication
between replicas and the ordered exchange of update operations
stored in per replica logs, enables this set of features and
functionalities:
 Supportfor arbitrary communication topologies:

the protocol provides the mechanism to propagate updates
between any two replicas. In turn, the theory of epidemics
ensures that these updates transitively propagate throughout
the system [3].

 Operation over low-bandwidth networks:

recon’ciliation is based on the exchange of update operations
instead of full database contents, and only updates unknown to
the receiving replica are propagated.

* Now ar Oracle Corporation. 500 Oracle Way. Redwood Shores, CA 94065.

Permission to make digital/hard copy of part or all this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appoar, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to

redistribute to lists, requires prior specific permission and/or a fee.
SOSP-16 10197 Saint-Malo, France
0 1997 ACM 0-89791-916-5/97/0010...$3.50

Incremental progress:

the protocol allows incremental progress even if interrupted,
for example, due to an involuntary network disconnection.
Eventual consistency:

each update eventually reaches every replica, and replicas
holding the same updates have the same database contents.
Eficient storage management:

the protocol allows replicas to discard logged updates to
reclaim storage resources used for reconciliation.
Propagation through transportable media:

one replica can send updates to another by storing the updates
on transportable media, like diskettes, without ever having to
establish a physical network connection.
Light-weight management of dynamic replica sets:

the protocol supports the creation and retirement of a replica
through communication with only one available replica,
Arbitrary policy choices:

any policy choices for when to reconcile and with which
replicas to reconcile are supported by the anti-entropy
mechanism. The policy need only ensure that there be an
eventual communication path between any pair of replicas,

Other weakly consistent replicated systems support subsets of
these functionalities. For example, Coda’s reconciliation
protocols allow server replicas to reconcile with each other, and
mobile replicas to reconcile with servers, but mobiles cannot
reconcile amongst themselves [ll]. In Ficus, reconciliation cnn
occur between any pair of replicas, however server creation and
retirement requires coordination among all replicas [7]. Oracle 7
has a two-level hierarchy of replicas: master replicas send thelr
transactions to all other masters, but cannot forward transactions
received from other masters; a snapshot replica can only
reconcile with its specific master, independently of the
availability of other masters [16]. Gray et al. also proposed a two.
tier replication model that, in contrast to Oracle’s system, ensures
convergence of the replicas but dob not allow reconciliation
between mobile replicas [6]. Golding’s time-stamped anti-
entropy protocol [4] comes closest to Bayou’s. Many of the
mechanisms in his design are similar, however he suggests n
heavier weight mechanism to create replicas and a less aggressive
approach for replicas to reclaim storage resources.

The Bayou system places additional requirements on its anti-
entropy protocol due to its support for conflict detection and
resolution based on per-write dependency-checks and merge
procedures [20] and for session guarantees [19]. By presenting
the protocol in detail, along with the design decisions that went
into it, this paper shows how the protocol design supports both
these requirements of the Bayou system, as well as the features
listed above.

We believe that all of the features enabled by Bayou’s antl-
entropy protocol are important. First, because applications and
users have different requirements for data reconciliation, the
protocol supports the replica’s ability to choose when to reconcile
and with whom to reconcile. For example, users of personal

288

information management applications, like address books and
calendars, can reconcile their databases differently than
enterprise-wide databases, like the ones used for intranet web-
sites. Communication can therefore occur at “convenient” times.
Second, the protocol was designed to effectively support the
variety of networking and computing environments these
applications and users may operate in.

The paper starts with a simple protocol for anti-entropy,
highlighting the features enabled by this basic design: support for
arbitrary networking environments, support for low bandwidth
networks, and incremental progress. It then describes protocol
extensions that enable other desired features: management of the
storage resources required for the operations log, propagation
using transportable media, support for eventual consistency, and
light-weight management of dynamic replica sets. The paper
concludes with a general discussion of how the anti-entropy
protocol’s features can be implemented in other systems,
potential drawbacks of the protocol, policy choices enabled by
the protocol, performance measurements, and an expanded
discussion of related work.

2. Basic Anti-entropy
The goal of anti-entropy is for two replicas to bring each other

up-to-date. In Bayou, the storage system at each replica, also
called a server, consists of a ordered log of updates, called writes,
and a database that results from the in-order execution of these
writes. A server’s lvrite-log contains all writes that have been
received by that Bayou server either from an application or from
other servers. Therefore, anti-entropy needs to enable two servers
to agree on the set of writes stored in their logs.

For the purpose of this paper, a Bayou write can be thought of
as a procedure that generates a set of updates to be applied at the
database. Specifically, a Bayou write consists of three
components: a set of updates, a dependency check, and a merge
procedure. The dependency check and the merge procedure of a
write let each server that receives the write decide if there is a
conflict and, if so, how to resolve it [20]:

When a Bayou server first receives a write from a client
application, the server assigns a monotonically increasing accept-
srantp to the write. Accept-stamps can be time-stamps or simple
generation counters. As it propagates via anti-entropy, each write
carries its accept-stamp and the identifier of the server that
assigned the stamp. Accept-stamps define a total order over all
writes accepted by a server and a partial order, which we call the
accept-order, over all writes in the system. Write A precedes
write B in the accept-order when both were accepted by the same
server and write A was accepted before write B. Servers store
writes in their write-logs in an order that is consistent with this
accept-order.

The simplest anti-entropy protocol can now be described. The
protocol is based on the following three design choices for the
reconciliation process:
1. it is a one-way operation between pairs of servers;
2. it occurs through the propagation of write operations, and
3. write propagation is constrained by the accept-order.

Pair-wise communication supports the reconciliation of any
two servers independently of which other servers may be
available and of how the network connection between the servers
is established. The protocol relies on the theory of epidemics to
ensure that writes eventually propagate to all other replicas [33.

A Bayou server can choose its anti-entropy partner at random
or based on other knowledge, like network characteristics. In fact,
ad-hoc network connections between arbitrary replicas, as

possible with wireless infrared links, can be easily supported.
Alternatively, a system could choose to force more structure on
the communication patterns between replicas, for example, by
designating master replicas and subordinate replicas that only
reconcile with their masters or by organizing replicas into logical
reconciliation rings. Structured communication patterns permit
accurate information about the state of the replicas to be
maintained more easily and to be used to optimize
communication between the replicas. However, by restricting the
set of servers with which to communicate, update propagation is
more likely to suffer from communication outages. We opted for
the peer-to-peer reconciliation model because of the variety of
possibly changing communication topologies it supports.

The pair-wise anti-entropy protocol was designed to be uni-
directional. One server brings another one up-to-date by
propagating those writes not yet known to the receiving server.
The advantage of one-way reconciliation is that the process only
requires an initial exchange of state information, thereafter all the
protocol’s state is kept at the sending replica and communication
flows in only one direction, from the sender to the receiver.

The anti-entropy design is based on the exchange of write
operations because Bayou’s conflict detection and resolution
mechanisms require that writes are executed at all replicas.
Propagating operations, instead of database contents, has other
advantages. Namely, the amount of data propagated during
reconciliation is proportional to the update activity at the replicas
instead of being dependent on the overall size of the data being
replicated. Thus, when the database size is much larger than the
database updates, the bandwidth required for the execution of the
protocol is reduced. Furthermore, the propagation of update
operations avoids any ambiguity introduced by the creation and
deletion of replicated objects. Protocols based on the exchange of
deltas or differences in data values require additional mechanisms
to correctly handle this ambiguity because the existence of a
value at one replica and the lack thereof at anothep cannot
correctly identify whether the value is new or it has been deleted.
Finally, write operations can easily be stored in a log, which can
then be used during reconciliation to decide which operations
need to be propagated. Aside from the creationldeletion
ambiguity, protocols based on deltas have properties similar to
those of protocols based on the propagation of update operations.

Our third design choice, enforcing the partial accept-order
during anti-entropy, is necessary to maintain a closure constraint
on the set of writes known to a server, which we call the prejik-
property. The prefix property states that a server R that holds a
write stamped Wi that was initially accepted by another server X
will also hold all writes accepted by X prior to Wi. The prefix-
property enables the use of version vectors to compactly
represent the set of writes known to a server. More precisely, the
entry for another server X in R’s version-vector, R.V(X), is the
largest accept-stamp of any write known to R that was originally
accepted from a client by X.

The basic anti-entropy algorithm, shown in Figure I, updates
the receiving server R with the writes stored at sending server S.
This initial protocol assumes that servers retain all writes they
have ever received. This simplifying, but ifipractical, assumption
is later relaxed in section 3. During anti-entropy, the prefix
property and the ensuing use of version vectors enable a server to
correctly determine which writes are unknown to the receiving
server R by comparing the accept-stamp of a write in its write-log
with the entry corresponding to the write’s accepting server in
R’s version-vector. The algorithm demonstrates the incremental
transmission of each unknown write from S to R-The reverse
process, to update S from R, is identical.

289

aati-entmpy(S,R) (
Get R.V from receiving server R
#now send all the writes unknown to R
w = first write in Swrite-log
WHILE (w) DO

IF R.V(w.server-id) c w.accept-stamp THEN
w is newfor R
SendWrhe(R, w)

w = next write in &write-log
END

1
Figure 1. Basic anti-entropy executed at server S to update receiving server R

The algorithm is very simple. The sending server gets the timetable [1, 12,211 of which replicas have received what writes,
version vector from the receiving server; then it traverses its The problem with these approaches is that a single, long-
write-log and sends the receiving server each write not covered disconnected replica can cause the write-logs at all other replicas
by that vector. It is worth pointing out that the protocol traverses to grow indefinitely. Satin and Lynch noted this problem and
the sender’s write-log only once. proposed forcibly removing such sites from the replica set [17],

A feature of this algorithm is that it allows anti-entropy to be
incremental. In other words, reconciliation between two replicas
can make progress independently of where the protocol may get
interrupted due to network failures or voluntary disconnections.
When a new write arrives at the receiver it can be immediately
included in the receiver’s write-log because tbe sending replica
ensures that the receiving server will hold all writes necessary to
satisfy the prefix property. If interrupted while sending writes,
those writes transmitted successmlly to the receiving server can
thus be processed and stored in the receiver’s write-log. Most
importantly, during the next execution of the protocol, these
writes need not be resent and the sending server only propagates
those writes still unknown to the receiving server. Since the
ordering in which the writes reach the receiving server is
important to ensure the prefix property, the anti-entropy protocol
needs to be implemented over a transport layer that guarantees
ordered delivery of messages.

Bayou takes a different approach. In Bayou, each replica can
independently decide when and how aggressively to prune a
prefix of its write-log subject to the constraint that only “stable”
writes get discarded. The notion of write stability is discussed
below. An important consequence of permitting servers to discard
writes that may not have fully propagated is that anti-entropy
between servers that are too far “out of synch” may rcqulre
transferring the full database state from one server to the other,
Thus, there is a storage-bandwidth tradeoff based on how
aggressively replicas prune their logs and how frequently replicas
perform anti-entropy. This section, after presenting Bayou’s
actual anti-entropy protocol with support for write-log truncation,
presents a discussion of this tradeoff.

3.1. Write Stability

The basic anti-entropy algorithm has several of the features we
deem important in a reconciliation protocol: it supports a variety
communication topologies, it supports a variety of policy choices
for when and with whom to reconcile, it operates over low
bandwidth networks, and it makes incremental progress in the
presence of protocol interruptions. Additionally, as shown in
section 4, the protocol’s incrementality and pair-wise nature
make it adaptable for reconciliation through transportable media,
like floppy disks or PCMCIA storage cards, and an extension of
the prefix property enables the light-weight management of
dynamic replica sets. Before discussing these additional
functionalities we focus on relaxing the algorithm’s reliance of
ever-growing write-logs.

A stable write, also called a committed write, is one whose
position in the write-log will not change and hence never needs to
be re-executed at that server. Any mechanism that stabilizes the
position of a write in the log can be used. Details on the benefits
and drawbacks of several write stabilizing mechanisms have been
described in a previous publication [20].

3. Effective Write-log Management ,
Although very simple, the anti-entropy algorithm presented in

Figure 1 is based on a generally unreasonable assumption: that
servers do not discard writes from their write-logs. In practice,
although disks are continuously becoming cheaper and denser, it
is unreasonable to assume that replicas can store ever-growing
logs of operations. In particular, mobile hosts do not have
unbounded storage. This section shows how servers can
effectively manage the storage resources of their write-logs.

Previous work on propagating logged writes observed that a
write can be discarded from a replica’s log once that write has
fully propagated to all other replicas. Determining which writes
have fully propagated can be done by running a’ distributed
snapshot algorithm to establish a “cutoff’ timestamp [17] or by
having replicas maintain an acknowledgment vector [4] or

Bayou uses a primary-commit protocol to stabilize w&es,
hereby ensuring that the stabilization process does not slow down
due to lengthy disconnections of some replicas. In this protocol,
one database replica is designated as the primary replica and its
role is to stabilize (commit) the position of a write in the log
when it first receives the write. As the primary commits a write, it
assigns a monotonically increasing commit sequence number
(CSN) to the write. The CSN is the most significant factor used to
determine a write’s position in the log; uncommitted or tentative
writes have a commit sequence number of infinity. The commit
sequence numbers and accept-stamps define a new partial order
over the writes in the system, where write A precedes write B if
A has a smaller CSN, or if both are uncommitted and were
accepted by the same server and write A was accepted before
write B. In this order committed writes are always totally ordered
amongst themselves, are ordered before any tentative writes, and
are thereby stable. The CSN information propagates back to all
other servers through an extension of the anti-entropy algorithm
described below. When a non-primary replica learns of a write’s
final CSN, the write becomes stable at that server since the
replica will previously have learned of all writes with lower
commit sequence numbers.

This more complex partial order, called stable-order, preserves
the prefix property requirement of anti-entropy because: (1)
servers reconcile uncommitted writes with the primary using the
same protocol described thus far, hence ensuring that the prefix

290

anti-entropy(S,R) (
Get R.V and R.CSN from receiving server R
#first send all the committed writes that R does not know about
IF R.CSN < SCSN THEN

w = first committed write that R does not know about
WHILE (w) DO

IF w.accept-stamp c= R.V(w.sezver-id) THEN
R has the write, but does not know it is committed
SendCommitNotification(R, w.accept-stamp, wserver-id. w.CSN)

EL-SE
SendWrite(R, w)

END
w = next committed write in S.write-log

END
END
w = first tentative write
#now send all the tentative writes
WHILE (w) DO

IF R.V(w.server-id) c w.accept-stamp THEN
SendWrite(R. w)

w = next write in S.write-log
END

1
Figure 2. Anti-entropy with support for committed writes (ran at server S to update R)

property holds at the time writes are committed, and (2) servers
always propagate committed writes before tentative writes as
described below. The next subsections show how the anti-entropy
protocol changes to support write commitment, and how tbe
stable-order is used to aggressively truncate writes from servers’
logs.

3.2. Propagation of Committed Writes
The part of a server’s write-log corresponding to committed or

stable writes can be represented by either another version vector,
a commit vector, or by the highest commit sequence number
known to a server, S.CSN. Since committed writes are totally
ordered by their commit sequence numbers and they propagate in
this order, the commit sequence number represents the committed
portion of the write-log in a concise way. The algorithms in this
section will therefore use S.CSN for this purpose.

To propagate the commit information of writes, the anti-
entropy algorithm cannot just test whether a write is covered by
the receiving server’s version vector. The receiving server may
have the write, but not know that it is committed. The sending
server must therefore first inspect all the committed writes that
the receiving server may be missing. As shown in Figure 2, the
algorithm starts by comparing the two servers’ highest commit
sequence numbers. If the sender holds committed writes that the
receiver is unaware of, it will send them to the receiver. Notice
that for writes that the receiver already has in tentative form but
for which it does not know the commit sequence number, only a
commit notification is sent. A commit notification only includes
the write’s accept-stamp, server-id, and new commit sequence
number instead of the entire write. After the committed portion of
the write log is processed, the same algorithm as before is used to
send all the new tentative writes to the receiving server.

3.3. Write-log Truncation
The anti-entropy protocol allows replicas to truncate any prefix

of the stable part of the write-log whenever they desire or need to
do so. The implication of truncating the write-log is that on
occasion a replica’s write-log may not hold enough writes to
allow incremental reconciliation with another replica. That is, the
sending server may have truncated writes from its write-log that

are yet unknown to the receiver. This can occur, for example,
when the sending server has received and later truncated
committed writes that have not reached the receiving replica
because the receiving replica has been disconnected for a long
time. The protocol needs to detect and handle this possibility.

To test whether a server is missing writes needed for anti-
entropy, each server maintains another version vector, S.0, that
characterizes the omitted prefix of the server’s write-log; a
commit sequence number is also maintained for the omitted part
of the log. A server can easily detect whether it is missing writes
needed to execute anti-entropy with another server if its omitted
sequence number, SOSN, is larger than the other server’s
commit sequence number, R.CSN. If so, there exist committed
writes that the sending server truncated from its log, and that the
receiver has not yet received. Under this circumstance, if the two
servers still wish to reconcile, a full database transfer has to
occur. That is, the receiving replica must receive a copy of the
sender’s database that includes all writes characterized by the
omitted vector. By sending this database the sender makes sure
that the receiver knows of all the writes needed to proceed with
the regular, more incremental part of the algorithm.

Figure 3 presents the anti-entropy algorithm with support for
write-log truncation. The protocol starts by checking if the sender
has truncated any needed writes from its write-log. If it has all the
entries necessary to only send writes or commit notifications, the
algorithm continues just as described earlier. However, if there
are missing writes, it sends the contents of the full database to the
receiving server in addition to the version vector and the commit-
stamp that characterize the database being sent. Once the
receiving server receives the database and the corresponding new
omitted vector and sequence number, it removes all writes from
its write-log that are covered by the new omitted vector, but more
importantly, keeps all the writes not covered by this vector, since
these may be unknown to the sender. After the database transfer,
the algorithm transition’s back to incrementally sending the
remaining commit notifications and writes not yet known to the
receiving replica.

A couple of characteristics of this algorithm should be pointed
out. First, sending the complete database during reconciliation
may require much more network bandwidth than the incremental,
per write, part of the algorithm. Second, the database transfer is

291

anti-entropy(S,R) (
Request R.V and R.CSN from receiving server R
#check if R’s write-log does not include all the necessary writes to only send writes or
#commit notifications

IF (S.OSN > R.CSN) THEN
#Execute a full database transfer

Roll back S’s database to the state corresponding to S.0
SendDatabase(R, S.DB)
SendVector(R, SO) #this will be R’s new R.0 vector

SendCSNIR. S.OSN) # R’s new R.OSN will now be S.OSN

END ’ ’ .
#now same algorithm as in Figure 2, send anything that R does not yet know about

IF R.CSN < S.CSN THEN
w = first committed write that R does not yet know ahout
WHILE(w) DO

IF w.acce.pt-stamp c= R.V(w.server-id) THEN
SendCommitNotification(R, w.accept-stamp. w.server-id, w,CSN)

ELSE
SendWrite(R, w)

END
w = next committed write in S.write-log

END
END
w = first tentative write in S.write-log
WHILE(w) DO

IF R.V(w.server-id) c w.accept-stamp THEN
SendWrite(R, w)

w = next write in S.write-log
END

Figure 3. Anti-entropy with support for write-log truncation (run at server S to update server R)

not incremental; the receiving server must obtain the full database
and the corresponding version vector and commit sequence
number for reconciliation to succeed.

3.4. Storage and Networking Resource Tradeoh
Truncating a server’s write-log trades off potentially increased

usage of network resources with increased storage requirements
by one server to bring another server up-to-date. A server either
retains sufficient writes to update other servers incrementally, or
truncates writes aggressively, which may cause occasional full
database transfers. Avoiding a full database transfer is important
if servers are synchronizing through low-bandwidth or ‘costly
networks and the database is large. Thus, the challenge is to
reduce the server’s storage resources occupied by the write-log
while keeping the chance of having to perform a full database
transfer low.

The choice of when to truncate the write-log is left to each
server’s discretion. One potentially interesting policy would be
for the server to maintain running estimates of the rate at which
writes are committed and of the rate at which writes propagate
through the system, and to use these estimates to establish when
and how much of the write-log to truncate. Another, much
simpler, policy is to truncate the write-log when free disk-space
at the server falls below a certain threshold. Another, more
conservative, but potentially more accurate, approach would be to
maintain an estimate of the maximum commit sequence number
known to all servers.

3.5. Rolling Back the Write-log
The write-log of a server needs to be rolled back, and the effect

of the writes undone from the database, in two different situations
during anti-entropy: a sender needs to rollback its write-log if a
full-database transfer is required, while a receiver has to roll its
log back to the position of the earliest write it receives. Rollbacks

at the sender’s side should be rare, since we expect full database
transfers to be rare.

On the receiver’s side, the write-log is rolled back at most once
per anti-entropy session. Two optimizations can further reduce
the overhead of rollback operations. First, if the replica is
receiving writes from more than one replica at a time, that is, the
server is involved in multiple anti-entropy sessions, the write-log
only needs to be rolled back once to the insertion point of the
earliest write being received. Second, the receiving server dots
not need to redo the rolled-back writes until the next read from an
application. Hence, there is a tradeoff between lowering the cost
of near consecutive anti-entropy sessions and the latency of the
next read from a client. A replica could therefore roll its write-log
forward, that is, redo the rolled-back writes, when a certain time
threshold has passed since an anti-entropy session. Such I\
threshold can be based on the frequency of read operations.

4. Anti-entropy Protocol Extensions
So far, the paper has presented a reconciliation protocol that

supports different networking environments and reconciliation
policies, is incremental, and allows servers to manage the stomp
resources and performance of their write-logs to their best
convenience. As mentioned earlier, the simple anti-entropy
design also enables additional protocol extensions: server
reconciliation using transportable media, support for session
guarantees and eventual consistency, and light-weight
mechanisms to manage server version vectors when replicas can
be created or retired at any time. These features are enabled by
the three basic anti-entropy design choices, pair-wise
communication, exchange of writes and write propagation
according to specific write orders. As described in this section,
they also work well with the changes made to the algorithm for
more effective storage management.

292

file-anti-entropy(tileID, CSN, V) (
OutputCSN(fileID, CSN);
OutputVector(fi1eID.V);
IF (S.OSN > CSN) THEN

#Execute a full database transfer
Roll back s’s database to the state corresponding to S.0
OutputDatabase(frleID, S.DB)
OutputVectorQileID. S.0) #this will be the receiver’s new R.0 vector
OutputCSN(tileID, S.OSN) #the receiver’s new R.OSN will now be S.OSN
CSN = S.OSN; # CSN now points to XOSN, which will be the receiver’s new CSN at this point

END
#write anything that is not covered by CSN and V
IF CSN < S.CSN THEN

w = first write following the write with commit sequence number = CSN
WHILE(w) DO

IF w.accept-stamp c=V(w.server-id) THEN
OutputCommitNotification(lileID, w.accept-stamp, w.server-id, w.CSN)

ELSE
OutputWrite(fileID, w)

END
w = next eommiued write in S.write-log

END
END
w = first tentative write ia S.write-log
WHILE (w) DO

IF V(w.server-id) c w.accept-stamp THEN
OutputWrIte(fileID. w)

w = next write in S.write-log
END
OutputCSN(fileID.S.CSN);
OutputVector(fIleID,S.V);

1
Figure 4. Off-line anti-entropy through transportable media (from S to a fiIe)

4.1. Anti-entropy through Transportable Media
In addition to supporting varying networking environments,

the anti-entropy protocol easily extends to using transportable
media, like floppy disks, PCMCIA storage cards or even PDAs,
instead of an actual network connection.

Figure 4 presents an off-line anti-entropy algorithm that outputs
information about a server’s write-log and database to a file. The
main difference between this algorithm and the one discussed in
section 3 is that instead of sending the data over a network
connection, the updates are stored into a file. This file is later
used by another server to incorporate the new updates into its
write-log.

The off-line algorithm has additional features not present in the
on-line version, First, it takes two parameters, a commit sequence
number and a version vector; these parameters define the
minimum state required by a potential receiver of the file. Any
server whose commit sequence number is at least as large as the
CSN parameter and whose version vector dominates the version
vector parameter can use the file to update its write-log. Second,
the algorithm writes out the commit sequence number and
version vector parameters to allow any server that is presented
with the file to determine whether it meets the minimal state
requirements to use the file. Finally, the algorithm also writes out
the sender’s commit sequence number, S.CSN, and the full
version vector, S.V. By doing so, it enables receiving servers to
quickly determine whether the rile holds anything new.

The algorithm can be modified to test the space remaining on
the auxiliary storage device each time new data is written. When
the device fills up the current file is terminated by writing the

CSN and V version vector corresponding to the last write
included in the file. Then, a new file-anti-entropy session can be
started with the closing parameters of the previous session.
Thereby sets of devices with tiles that incrementally update other
servers can be generated, a feature that is useful if resource-
limited auxiliary devices like floppy disks are used for off-line
reconciliation.

4.2. Session Guarantees and Eventual Consistency
In addition to the partial propagation order required by the

prefix property, Bayou has two additional ordering requirements:
(1) a causal order to provide session guarantees to applications
and (2) a total order to ensure eventual consistency of all replicas.
This subsection shows how both of these stronger write orders are
easily supported by the anti-entropy protocol; in fact, no changes
need to be made to any of the algorithms in Figures 1-4.

Bayou provides applications with session guarantees to reduce
client-observed inconsistencies when accessing different servers.
The description of session guarantees has been presented
elsewhere [19]. However, with respect to anti-entropy, the
important aspect of session guarantees is that their
implementation requires writes to be causally ordered. The causal
order is a refinement of the accept-order, called cuusul-accept-
order, and specifies that any write A precedes another write B if
and only if, at the time write B was accepted by some server from
a client, write A was already known to that server. The causal-
accept-order is established through the accept-stamps assigned to
writes when they are first accepted by a server. To this end, each
server maintains a logical clock [13]. This logical clock advances
both when new writes are accepted by the server from clients, or

293

when writes with higher accept-stamps are received through anti-
entropy. Thus, a write accepted by the server will always get a
higher accept-stamp than all other writes known to that server,
and through that get ordered after them. Because the ordering
constraints of the casual-accept-order are stronger and cover
those defined by the regular accept-order, the prefix property
continues to hold; furthermore, propagating writes in the causal-
accept-order is sufficient for the order to be applied at all servers.
The anti-entropy protocol thus supports the causal ordering
needed to implement Bayou’s session guarantees without changes.

In general, without making assumptions about the
commutativity of writes, a total write order is necessary to ensure
that replicas holding the same set of writes also hold the same
database contents. The stable-order introduced in section 3.1
provides eventual consistency of stable writes. However, we deem
eventual consistency to be an important property of weakly
consistent storage systems, which should be achieved even for
non-stable writes. The accept-order can be easily converted into a
total order by using the identification of the server that accepted
the write: accept-stamps are used for the causal-accept-order
described above and server identifiers are used to break ordering
ties between writes with equal accept-stamps. To ensure eventual
consistency, writes are propagated between servers and stored in
a server’s write-log according to the total order defined by the
accept-stamp and server-id tuple. The stable-order of section 3.1
can also be converted into a total order. To convert the stable-
order into a total order three factors are used, namely cCSN,
accept-stamp, sewer-id>, with the commit sequence number being
the most significant factor, and the sever-id again only used to
break ties among accept-stamps of non-stable writes.

The ordering imposed on the propagation and execution of
writes plays two different roles: (1) ensure the prefix property
that enables the version vector representation of a replica’s state,
and (2) provide applications with guarantees on the “quality” of
the data held by a replica. The ordering extensions discussed in
this subsection, causal and total, address only the second role.
Furthermore, by being consistent with the ordering requirements
for the prefix property, no changes were needed to accommodate
these extensions in the design of the anti-entropy algorithm itself.
In fact, the anti-entropy algorithms can accommodate any order
that provides the closure properties required by the prefix
property.

4.3. Light-weight Server Creation and Retirement
In most systems, the creation of a data replica is a heavy weight

operation. It normally requires the intervention of system adminis-
trators or the interaction with specific servers. In Oracle, for exam-
ple, master replicas can only be created at the master definition
replica, and all existing masters must quiesce during the new mas-
ter’s creation; snapshot replicas can only be created at master repli-
cas [16]. Coda requires that the replication factor and the locations
of servers be specified at volume creation time; although the sys-
tem supports later addition of replicas, the implementation is based
on the assumption that it will not be a frequent operation [18].
Mobile caches in Coda can only be loaded from replica servers and
not from other mobile caches. Golding’s mechanisms require that
K servers be available for server creation [4], so that K-l of these
servers may fail and at least one server will include the newly cre-
ated server in its view of what replicas exist.

Lighter weight mechanisms for server creation and retirement
enable more flexible usage scenarios. For example, when two col-
leagues meet on a business trip, one can get a replica of the budget
plan from the other colleague and immediately start receiving all
the updates made throughout the budgeting process. The user does
not have to wait for a connection with either a master server or a

quorum of replica servers. Lotus Notes has identified the impor-
tance of this feature and advertises it as one of the key differentia-
tors of the system [IO].

In Bayou new servers can be created, and similarly retired, by
communicating with any available server. Anti-entropy can easily
support these operations if the version vectors are updated to
include or exclude the new or retired servers. Dynamic manage-
ment of the version vectors needs a mechanism to (1) uniquely
assign identifiers to newly created servers, and (2) allow any server
to correctly determine whether a server has been newly created or
retired. The prefix property and the causal-accept-order requirc-
ments placed on the propagation of Bayou writes are used to pro-
vide these mechanisms. Write accept-stamps are used to assign
server identifiers that exactly determine the location and time of
each server’s creation. These server identifiers can then be com-
pared with the version vectors stored at each replica, to determine
whether a server is new or has been retired. The next two subscc-
tions describe the creation and retirement of servers in more detail,

Creation and Retirement Writes
A Bayou server St creates itself by sending a creufion wile to

another server Sk, Any server for the database can be used. The
creation write is handled by Sk just as a write from a client. The
write is inserted in Sk’s write log, and is identified with the <infin-
ity, Tk,t, Sk> three-tuple, where Tk,t is the accept-stamp assigned
by Sk*

The creation write serves two main purposes. First, as it propa-
gates via anti-entropy, it informs other servers of the existence of
Sl. The effect of the execution of the write is that an entry for St is
added to the server’s version vectors that cover this write. Second,
it provides St with a server-id that is globally unique and clearly
identifies the time of its creation. Specifically, eTk,i, Sk> becomes
St’s server-id.

The new server also uses the value of flk t + 1) to initialize its
own accept-stamp counter. This initialization is necessary so all
writes accepted by the new server follow its creation write in the
causal-accept-order.

Note that the recursive nature of the server identifiers affects the
size of the version vectors. At one end, if all servers are created
from the first replica for the database, all server identifiers will
contain only one level of recursion and thus be short. On the other
hand, if replicas are created linearly, one from the next, server
identifiers will be increasingly longer, and the version vectors for
such a database will therefore also be much larger.

When a server is going to cease being a server for a database, it
does so by issuing a rerirement write to itself. Again, the write is
stamped just like any other Bayou write. Its meaning is that the
server is going out of service. At this point, the server will no
longer accept new writes from clients. However, the server must
remain alive until it performs anti-entropy with at least one other
server so that all its writes, including its retirement write, get prop-
agated to other servers.

When a server receives a retirement write, it removes the corre-
sponding entry from all the server’s version vectors that cover this
write. The prefix property ensures that a server Sk Will have
received and processed all writes accepted by Sl before removing
St from its version vector.

Logically Complete Version Vectors
One thorny problem remains, however: when the protocol is cxe-

cuted at the sending server, it needs to decide if a write is new to
the receiving server by just comparing the write’s accept-stamp
with the receiving server’s version vector; specifically, the problem
occurs when the receiving server’s version vector is missing an

294

entry. The sending server has to correctly determine whether the
receiver has eliminated the entry because the server corresponding
to that entry has retired, or whether the receiver has never heard of
the server associated with the missing entry. What writes to propa-
gate critically depends on the outcome of this decision.

More precisely, a server St may be absent from another server’s
version vector for two reasons: either the server never heard about
Si’s creation, or it knows that Si was created and subsequently
destroyed. Fortunately, the recursive nature of server identifiers in
Bayou allows any server to determine which case holds. Consider
the scenario in which R sends S its version vectors during anti-
entropy, and R is missing an entry for Si = <Tk,it Sk>. There are
two possible cases:

If R.V(Sk) 2 Tk,i, then server R has seen St’s creation write;
in this case, the absence of Si from R.V means that R has
also seen Si’s retirement. S can safely assume R knows that
server Si is defunct, and does not need to send &y new
writes accepted by Si to R.

If R.V(Sk) c Tk,i, then server R has not yet seen S$ creation
write, and thus cannot have seen the retirement either. S
therefore needs to send R all the writes it knows that have
been accepted by Sk

Note that this scenario assumes that R.V includes an entry for
Sk Since multiple servers may retire or be created around the
same time, R’s version vector may be missing entries for both Si
and Sk in the example used above. Fortunately, the presence of an
entry for Sk is not essential to identify retired servers. The solution
is based on the recursive nature of the server identifiers. Imagine a
CompleteV vector that extends the information stored in the V
vector to include timestamp entries for all possible servers. A
recursive function can compute entries for this extended vector:

COmpleteV(Si = <Tk,i, Sk>) =
Wi) if explicitly available
plus infinity if Si = 0, the first server
plus infinity if Compk?teV(Sk) 2 Tk,i
minus infinity if COmpkteV(&) -z Tk,i

A value of minus infinity indicates that the server has not yet
seen Si’s creation write, and plus infinity indicates that the server
has seen both St’s creation and retirement writes. A server can use
the CompleteV function as defined above to always correctly
determine which writes to send during anti-entropy.

The dynamic management of version vectors allows a server to
create itself by contacting one server for the database. After issu-
ing its creation write, the newly created server needs to perform
anti-entropy with the server that just created it. Through this anti-
entropy session the newly created replica will itself hold its cre-
ation write. Note that the new server’s first anti-entropy session is
likely to include a full database transfer. After the anti-entropy ses-
sion between the new server and its creating replica, the creation of
a replica can tolerate any other failure, because, by virtue of its
server-id and version-vector, the new server holds all the informa-
tion it needs to positively identify its creation.

5. Discussion
This paper has presented the design of the anti-entropy protocol

in a series of steps, each focusing on the features enabled by
refinements or extensions of the basic three anti-entropy building
blocks: pair-wise communication, exchange of operations, and
the ordered propagation of operations. The presentation has been
framed in the context of Bayou and its requirements. This section
discusses the anti-entropy protocol independently of the Bayou
system. It starts with a deconstruction of the protocol, pointing

out which of the protocol’s properties enable each of anti-
entropy’s features and how these features can be provided in
systems that were designed with some, but not all, of the same
components. The section continues by highlighting some of the
drawbacks of the design presented in Sections 2-4. Finally, the
discussion focuses on some of the policy choices and tradeoffs
enabled by the anti-entropy design and the security issues raised
by the use of a peer-to-peer model of update propagation.

5.1. Implications for Other Systems
Table 1 presents the dependencies between features of the anti-

entropy reconciliation protocol and its design components.
Marked entries in the table indicate a dependency between a
feature and a design choice. The high-level message of this table
is that each of the protocol’s features depends only on a few
design choices, and that many features can be provided
independently.

The unidirectional peer-to-peer reconciliation model supports
reconciliation over arbitrary communication topologies and a
wide variety of policy choices of when and with which replica to
reconcile. Both of these features co-exist independently of the
protocol’s mechanisms to establish what data to reconcile, the
formats used for update propagation, and the order in which data
propagates in the system.

The protocol’s operation over low-bandwidth networks is
enabled through reconciliation based on the propagation of
update operations. Low-bandwidth networks can be similarly
accommodated by protocols that exchange deltas or differences
in the replicas’ values. Other systems can reconcile over low-
bandwidth networks using either update or delta-based
techniques, independently of whether they limit the
communication patterns between replicas or whether they impose
particular order on the propagation of the updates or deltas.

Update propagation between replicas can make incremental
progress if an order can be established over the data to be
reconciled. The minimum requirement is a partial order over the
updates introduced throughout the system. The peer-to-peer
model facilitates the incremental progress of the reconciliation
protocol because determining which data needs to be reconciled
depends only on the state of two replicas. The incremental nature
of the protocol is also facilitated by the propagation of operations
or deltas because the unit of propagation is small. Again,
incremental progress can be provided independently of the
mechanisms provided by the system for other features like data
consistency and replica set management.

Anti-entropy’s mechanism to cope with the aggressive
reclamation of storage resources depends on the stabilization of
some prefix of the operations-log. Any mechanism to stabilize
the order of operations and to propagate this information back to
the rep1ica.s is sufficient for this purpose.

Reconciliation using floppy disks or other transportable media
can be supported by systems that structure the reconciliation
process as a one-way protocol and that provide an ordering over
the data to be reconciled. In fact, systems that provide
incremental reconciliation protocols are likely to be well suited to
also provide file based reconciliation mechanisms.

Light-weight creation and retirement of servers, the last feature
introduced for the anti-entropy protocol, depends only on the use
of the causal-accept-order defined over updates generated in the
system. A system can adopt this technique as long as its
reconciliation mechanisms enforce such an ordering during
propagation so that version vectors can be used for state
representation and operations have a causal relationship. Also, an

295

Table 1: Features enabled by specific anti-entropy design components
* Small marks indicate that the feature is facilitated by the design choice, but does not depend on it.
** Eventual consistency can be supported with the incremental protocol by either establishing a total order on all updates, making operations

commutative, or by enforcing a total order on the propagation of updates that are part of the stable prefix.

equivalent of the creation and retirement writes must be provided.
However, it is not necessary for these systems to base their
reconciliation protocol on operation exchanges per se.

In summary, one of the strengths of the anti-entropy protocol
design is that many of its features can be reproduced by other
systems, even though they may diverge in the design choices for
other functionalities.

5.2. Disadvantages
The variety of features enabled by the anti-entropy protocol

result from each replica’s ability to reconcile with any other
replica in the system, and to do so by only consulting each other’s
version vectors and the sending, server’s write-log. The
drawbacks of the anti-entropy design-are associated exactly with
the potential sizes of these two data structures.

The version vectors used for the-anti-entropy protocol need an
entry for each replica in the system. The size of the vectors thus
grows in proportion to the number of replicas and the complexity
of the replica creation pattern. When the number of replicas of a
database is large compared to the update activity in the system,
the cost of exchanging version vectors during an anti-entropy
session can become a dominating performance factor. However,
as shown in section 6, when servers get created in well-behaved
patterns, the version vector size does not have a significant
impact on anti-entropy performance for replication factors of a
few thousand.

To satisfy Bayou’s propagation order requirements, each server
must retain all tentative writes in its write-log. Log compaction,
such as the removal of entries that first insert and later delete an
object from the database, cannot be used. Each server therefore
has to keep all the writes it has received until it is notified of the
writes’ commitment. Hence, if the update activity of the database
is large while the commit rate is low, the size of a server’s write-
log can grow large.

5.3. Anti-entropy Policies
Four types of policies are enabled by the mechanisms of the

anti-entropy protocol: policies for when to reconcile, policies for
choosing with which replicas to reconcile, policies for deciding
how aggressively to truncate the write-log, and policies for
selecting a server from which to create a new replica. The

different policy choices affect not only the performance and cost
of the anti-entropy process but also how quickly updates
propagate to other replicas, how up-to-date a replica is, how large
the write-log gets, and how quickly writes stabilize.

Potential policies for when to reconcile a replica include:
periodic reconciliation, manually triggered reconciliation, and
system triggered reconciliation. In other words, a replica can
communicate with other replicas at recurring intervals, users can
explicitly activate the reconciliation process, and anti-entropy can
be initiated by servers when certain system characteristics are
met. For example, a server may initiate anti-entropy when a
network link becomes available, when it detects the bandwidth is
above some threshold, when the CPU load is down, or when its
write-log is growing large and committing a series of writes
becomes necessary. In general, increasing the frequency of anti-
entropy among servers increases the rate of update propagation,
the degree to which servers are up-to-date, and the rate at which
writes stabilize but at the expense of greater bandwidth
consumption due to protocol overheads.

Similarly, policies for choosing with whom to perform anti-
entropy can depend on multiple factors: which other replicas arc
reachable, the network characteristics of the connection to these
replicas, the up-to-dateness of the replicas, whether the replicas
have truncated too, many entries from their logs, and which
replica is serving as the primary. Policy choices for anti-entropy
partners, like those for when to reconcile, generally trade off
bandwidth usage against propagation rates. Previous work on
analyzing epidemic-style algorithms, like those used in Bayou,
has shown that a judicious choice of anti-entropy partners can
dramatically reduce the total traffic required to propagate
updates, while yielding only modest increases in the propagation
delay [3]. The key is to favor nearby servers and to avoid
overloading slow network links. Golding also explored biasing
the selection process to favor nearby anti-entropy partners [4].

As discussed in section 3.4, policies to decide how aggressively
to truncate the write-log trade off storage and networking
resources needed during anti-entropy. Very aggressive write-log
truncation may cause lengthy anti-entropy sessions between some
servers because of the need to do full database transfers. Observe
that write-log truncation policies can be associated with groups of
replicas. Within a group, a few replicas may be designated as the

296

servers of choice with whom to reconcile; these replicas could
retain more writes in their write-logs to expedite anti-entropy
with replicas inside and outside of the group, allowing other
replicas in the group to reclaim storage more aggressively.

Finally, policies used to select a server from which to create a
new replica can affect the performance of the anti-entropy
protocol as shown in section 6. When several servers are
available to create a new replica, their respective server identifier
lengths should be considered in addition to the other
characteristics of these replicas, like up-to-dateness, connection
bandwidth, and completeness of their write-logs.

5.4. Security
In addition to the policies discussed thus far, the level of

security enforced during the reconciliation process can
significantly affect its performance. The peer-to-peer model of
the anti-entropy design has a variety of security implications.
Replicas may have different levels of trust in other replicas and in
clients. The trust relationship may even change depending on the
location of a replica, for example, if inside or outside a firewall.
The security model may not want to depend on third party
authorization services to avoid additional networking
requirements. If operations need to be authorized at all servers,
security me&data, like certificates, may need to propagate with
the operations. The higher the level of security that is required,
the more security related operations need to be executed during
the reconciliation process.

The Bayou implementation relies on digital certificates and a
hierarchy of trust delegations to implement security. Before
untrusted Bayou replicas reconcile, they authenticate each other.
In addition, writes include certificates to authorize database
accesses for a final time when committed at the primary. Each of
these security measures add to the reconciliation times of fully
secured Bayou databases.

6. Performance Evaluation
The implementation of the anti-entropy algorithms in Bayou

consists of 2846 lines of POSIX-compliant C code. The
implementation relies on an existing write-log implementation
(1730 lines), a database manager (14768 lines), and utility
routines to manipulate version vectors, server identifiers, and
write stamps (1081 lines). The implementation also relies on a
runtime environment with support for user-level threads, garbage
collection, and an RPC package. In this section we present an
evaluation of the performance of this implementation, which runs
unchanged on both SunOS 4.1.3 and Linux 2.0 platforms.

In summary, the analysis and measurements in this section
show that Bayou’s anti-entropy protocol performs as expected:
 An anti-entropy session propagates only writes unknown to

the receiver, and hence performs as a linear function of the
number of such writes and the available network bandwidth;

 While traversing its write-log, the sender spends only a
minimal amount of time deciding which writes to propagate;

 The bulk of the anti-entropy algorithm execution time is spent
on the network and applying the newly received writes to the
write-log and database of the receiver;

 Version vector storage requirements grow between linearly
and quadratically with the number of replicas, depending on
the pattern in which servers are created from others;

 The simplest implementation of checking whether a write is
covered by a version vector takes time between linear and
cubic to the number of servers, depending on how the servers
are created.

6.1. Experimental Setup
The measurements were taken for BXMH, a version of the

popular EXMH e-mail application that uses Bayou instead of a
file system to store mail messages. Each experiment measures the
time to run the anti-entropy protocol between two replicas of the
mail database. In all experiments, only committed writes are
propagated, and each write inserts a new e-mail message into the
database. In addition, for each anti-entropy session the size of the
propagated writes, or e-mail messages, is held constant. Results
were collected for two message sizes: 3000 byte messages and
100 byte messages; the message sizes includes both the headers
and the message bodies. The large size roughly corresponds to
the median size of mail messages. While the small messages were
artificially constructed, the large messages correspond to real
messages received by one of the authors, either truncated or
extended to be 3000 bytes long.

Two platforms were used in the experiments: SPARCstation-
10s running SunOS 4.1.3 (labeled SS in the graphs), and 486-
based laptops running Linux 2.0 (labeled 486); all machines are
clocked at SOMHz. The file system used to store the replica’s
write-log on the SPARCstations is NFS, whereas the laptops use
UFS. Two types of network connections link the replicas in these
experiments: a one hop, 10 Mbps ethernet connection, and a PPP
(point-to-point protocol) connection over a 9.6 Kbps modem and
then two ethernet hops to the second server within a firewall. In
practice, the achievable bandwidth over the modem reaches up to
26.2 Kbps due to compression.

Each measurement was taken at least five times, for the faster
experiments sometimes up to ten times. All figures present the
averages over all runs. They include error bars if these do not
clutter the presentation, otherwise standard deviations are
reported in the captions.

6.2. Anti-entropy Execution Times
Figure 5 demonstrates that the execution time of the anti-

entropy protocol is a linear function of the number of new writes
being propagated. The slope of the function depends on the size
of the messages being exchanged and the network bandwidth
available for reconciliation.

The range of performance observed for anti-entropy of 3000-
byte e-mail message writes starts with two servers running on the
SPARCstations communicating over the ethernet, which requires
2.26 seconds to propagate the first write and a little under 5
seconds for each additional 100. At the other extreme, for the
laptop and modem, it takes 7.16 seconds for the first write and
about 150 seconds for each additional 100 writes.

These numbers have significant room for improvement since
each Bayou write that adds an e-mail message to the BXMH
database currently has two substantial data overheads: 520 bytes
for the public key of the principal that is updating the database,
which is included for access control purposes; and 1316 bytes of
update schema information and data cell padding. These update
schema and cell padding overheads are unnecessarily large; 40%
of the overhead corresponds to the ASCII strings of the column
names of each field being updated, while the remaining fraction
of the 1316 bytes are zero filled to pad data cells because
SunRPC represents everything by an integral number of 4-byte
words. As shown below, more sophisticated representations for
update schema and cell padding would substantially improve the
performance of anti-entropy over the modem. Similarly, systems
with different access control policies or mechanisms could
obviate the need to transmit public keys with every write and,
with that, also reduce the overall communication overhead.

297

SS-~466. modem. 3000-byte msgs CH
SS+466. modem. lO@byte msgs o-a+

SSa466. ethernet. 3000-byto msgs v3+
SS-z-466, ethemot. lOO-byio msgs HC--(
SS->SS. ethernet. 3000-byte msgs -

SS-zCZ5. ethernot. 100.byle msgs m J

0 60 100 150 lf?rites p$&ated 300 350 400 450 Number 600

Figure 5. Anti-entropy execution as a function of the number of writes propagated :
, (each write corresponds to one mail message)

158

B other
At the receiver:

izll apply new writes to database
I insert new write5 in writelog

On the network:
IEL~ RPC marshaIling
w e-mail message related data
w public key for access control
I update schema information and

Anti-entropy setup:
0 authentication
M RPC initialization

0
ss-> 486 486 486 486 SS SS
Net: modem modem enet enet enet enet

bytes/msg: 3000 100 3000 100 3000 100

Figure 6. Anti-entropy execution time breakdown for the propagation of 100 writes
(standard deviations on all total times are within 2.2% of the reported numbers)

To further analyze the performance of the algorithm, we broke
down the executiojl time of anti-entropy sessions that propagate
100 writes between two replicas. Each of the bars in Figure 6
corresponds to a different experimental configuration. The labels
indicate on which platform the receiving replica ran, what
network connection was used, and which size messages were
propagated. In all cases the sending replica ran on a
SPARCstation, which does not affect the performande of anti-
entropy since, as the cost breakdowns show, the overheads at the
sending replica are minimal.

As figure 6 shows, the factors that contribute the most to the
performance of the anti-entropy interactions are:
 Network transfer: the most significant overhead of the anti-

entropy sessions corresponds to the actual transmission of the
writes. This phase includes the marshalling and unmarshalling
of the writes being propagated, as well as the time on the

‘network itself. In the graph, the network transfer time is
subdivided into four categories: time to marshal1 and
unmarshall the RPC data, time related to transfer actual
message information, time to transmit each write’s public key
and the overhead to transmit the update schema information

I padding

.

and data padding for each write. As mentioned earlier, systems
with different access control mechanisms and more efficient
schema and padding implementations could eliminate a
substantial part of the communication overhead, particularly In
the modem cases.
The-figure also shows that the bandwidth over the ethernet
between the SPARCstations is about double that achieved
between the laptop and the SPARCStation; the bandwidth in
the former case varied between 4.6 and UMbps, while the
laptop’s ethernet connection only achieved 2.4-3,lMbps. The
observed bandwidth over the modem varied between 23.3 and
26.2Kbps for the communication of the two sets of 100 writes.
Anti-entropy setup: during this step the sender locates other
replicas using the name service, sets up the RPC handle to
communicate with the receiving replica, and performs the
challenge response protocol that is used in Bayou to mutually
authenticate replicas before they engage in the actual
propagation of writes. The last response of the authentication
protocol also includes the version vector state information
from fhe receiving replica. This setup time accounts for most
of fhe time it takes to transmit one write. For 3000 byte

298

Figure 7.

At the receiver:

m apply new writes to database

insert new writes in writelog:
- tmnsa+on openiclose

I write to disk

- marshal1

0 canonicalize

At the sender:

I identify writes to send

-
I$ ss-> 486 486 486 486 SS SS

Net: modem modem enet enet enet enet

byteslmsg: 3CClO 100 3000 loo 3ocO loo

Network independent anti-entropy algorithm components for the propagation of 100 writes
(standard deviations on all total times are within 2.9% of the reported numbers)

messages the setup time in the ethernet case is 2.08 seconds
and in the modem case 4.63 seconds, which corresponds to 65
88% of the first write propagation times reported earlier.

 Applying the newly received writes at the receiver: the last
observable overhead in Figure 6 is due to the processing of the
received writes at the receiving replica, both incorporating the
writes into the write-log and applying them to the database.

Since the network transfer time dwarfs most of the other
execution time components of anti-entropy, Figure 7 shows the
smaller overheads of the algorithm; they exclude the network
transfer time and the anti-entropy setup time. We chose not to
include the setup time because it involves operations such as
authentication, which other implementations may choose to
exclude, and RPC initialization, which can be implemented
differently by other systems. These smaller components also
correspond to the network independent portion of the anti-
entropy algorithm.

Of these network independent overheads, the largest
component corresponds to inserting all newly received writes in
the receiver’s write-log. Figure 7 breaks that operation down into
four subcomponents: canonicalizing of the new writes for string
sharing purposes, marshalling the new writes to serially write the
in-memory data structures out to disk, the actual disk I/O time,
and the transactional overhead to manipulate the write-log.
Bayou’s current implementation is based on an in-memory
database and string canonicalization is necessary to reduce
memory overheads, but may not be needed in other systems. The
marshalling implementation is not optimized either. We believe
that the canonicalizing and marshalling steps have ample
opportunity for performance improvements.

The second largest cost component shown in Figure 7
corresponds to applying the 100 newly received writes to the
receiver’s database. This time ranges between 33.5 msec. on the
SPARCStation and 959 msec. on the laptop. Database
performance will necessarily vary depending of the database
manager used in the system’s implementation. These numbers
should therefore only be considered as one performance example.

Finally, Figure 7 shows that the time spent in the algorithm to
determine which writes are new to the receiving replica is
negligible, taking as little as 11 msec. and only a maximum of 42
msec. in these experiments, in which all writes are unknown to
the receiver. Separately we also measured the time for a sending
server to traverse 100 entries of its write-log when all of these
writes are already known to the receiver. For all the server pairs,
network combinations, and write sizes reported, this time is less
than a tenth of a second.

6.3. Effect of Server Creation Patterns
As mentioned in section 4.3, the space required to represent a

version vector depends on the pattern of server creations. To be
concrete, the representation used ‘on the wire” in our RPC
protocol is the SunRPC representation of a sequence of <server-id,
accept-stamp> pairs. This representation takes

4+12N+ ; SlSil
i=l

bytes for a vector of N servers, where ISil is 0 for the initial server
of a system and 1 + ISkl when Si is created from server Sk.
Accept-stamps are 8 bytes long. In the most storage efficient
case, all servers are created from the initial one, and the version
vector representation requires 20N - 4 bytes, or 20 Kilobytes for
1000 servers. In the least storage efficient case, servers are
created in one long chain, and the version vector representation
requires 4NA2 + 8N + 4 bytes, or 4 Megabytes for 1000 servers.

The time to test whether a given write is among those
represented by a version vector may, in the worst case, grow
cubically. This time analysis is based on a very simple
implementation that uses a list data structure for the version
vector representation. The three multiplicative factors result
from: (1) traversing the list representation of the version vector,
(2) comparing the server identifiers of each entry in the list with
the server-id of the write, and (3) if an entry for a server is not
present, recursively calculating CompleteV. More sophisticated
data structures like hash tables with a one way hash function
could be used instead, making the time linear.

Figure 8.a shows that the execution time of anti-entropy is a
linear function of the number of servers in the system for the least
costly server creation pattern. It also shows that 1000 servers can
be supported easily. On the other hand, as shown in Figure 8.b,
execution times grow quadratically in the most costly server
creation pattern. The cubic factor does not appear in Figure 8.b
because no servers had been retired from the system.

The measurements in Figure 8 correspond to the propagation of
100, 3000-byte messages between SPARCstations over the
ethernet connection. The measured execution times include both
the writes accept stamps to version vector comparisons and the
marshalling and network time for the initial back-flow of the
receiver’s version vector. In comparison, the numbers reported in
section 6.2 correspond to a system with three replicas.

If the size of version vectors causes performance problems due
to exceedingly long server-identifiers, the lightweight server
creation and retirement can be used to institute practical policies
to limit the number and lifetime of servers whose creation was far

299

a. Minimal server IDS b. Maximal server IDS

Figure 8. Anti-entropy execution time for 100 writes as a function of the number of replicas

removed from the initial server. For example, a server can
recreate itself with a smaller identifier if it locates another server
with a smaller identifier than the one of the server’s original
creator. This process requires the jssuance of a retirement write, a
new creation write, and anti-entropy with the new creator; it can
be optimized to reuse the server’s existing write-log and database.

7. Related Work
A number of research and commercial systems have used weak

consistency replication and propagated updates among replicas in
a lazy fashion. Each of the individual features of Bayou’s anti-
entropy protocol have almost certainly appeared in previous
systems in some form. Interesting differences lie in the
implementation details about what information gets exchanged
between replicas, what data structures are used to keep track of
other replicas and the state of these replicas, what communication
patterns are allowed between replicas, and so on. Unfortunately,
detailed information about how other systems reconcile their
replicas is difficult to obtain, especially for commercial products.
One contribution of this paper is describing a reconciliation
protocol in detail along with the design decisions that went into
it. In this section, we discuss how other systems’ protocols
compare to Bayou’s based on the sketchy information available.

Grapevine, one of the earliest weakly replicated systems,
propagated updates via electronic mail [2]. Electronic mail is not
completely reliable, however, so the product version of
Grapevine, called Clearinghouse [15], added a background anti-
entropy process in addition to mail delivery. It was later realized
that epidemic style algorithms, like Clearinghouse’s anti-entropy,
could be used by themselves’to fully propagate updates [3]. Pair-
wise reconciliation of replicas is currently used in several systems
besides Bayou, including Notes [IO], Ficus [7], and refdbms,
which uses Golding’s timestamped anti-entropy protocol [4].

Rather than a peer-to-peer model in which any replica can
contact any other replica to reconcile their data, some systems
organize replicas into a hierarchy where a replica only exchanges
updates with its parent or children. Examples of this are the client-
server reconciliation protocols in file systems like Coda [I 1] and
distributed object systems like Rover [9], and also the primary-
secondary or master-snapshot protocols in database management
systems like Oracle [16] and Sybase [5]. Due to their simplified
communication patterns, these systems can more easily maintain
accurate information about the state of the replica(s) with which
they exchange updates. However, update propagation is more
affected by communication outages.

In many systems using lazy replication, the information
exchanged between replicas is based on data objects with

associated update timestamps or version vectors. This is true for
Grapevine [2], Clearinghouse [15], Notes [lo], and Microsoft
Access [LX]. File systems like Coda [lg] and Ficus [7] exchange
updated files between servers or between clients and servers. The
notion of reconciling logs of update operations held at various
replicas, as is done in Bayou via the anti-entropy protocol, has
been discussed for some time in the literature [1, 17, 211 and 1s
used in some commercial database systems [5, 161. Oracle’l, for
instance, uses asynchronous RPCs to propagate transactions
between a master and its snapshots or other masters [16]; it does
not, however, allow these transaction to propagate through
intermediary servers. Rover also uses operations as lhe unit of
reconciliation by queuing RPC invocations that are eventually
applied to the master copy of an object [9].

Systems that propagate updated data objects need an additional
mechanism to handle deleted objects. For example,
Clearinghouse servers maintained and exchanged ‘death
certificates” for deleted objects [3, 151. Protocols have been
devised to decide when replicas can safely discard deleted data
[17]. When update operations rather than data are used for
reconciliation, deletions are handled automatically as just another
type of update operation, and servers can immediately reclaim the
space used by deleted data items.

A goal in the design of Bayou’s anti-entropy protocol was to
ensure that servers can make progress even if the protocol is
disrupted by the loss of a network connection. That is, a server
should be able to use and propagate to other replicas any updates
that it receives even if the protocol does not complctc
successfully. Some systems run their reconciliation process as an
atomic transaction and hence lose the incremental property. Coda
has added a trickle reintegration protocol for use by weakly-
connected clients; while this protocol is atomic, it includes the
notion of a chunk size that can be set to a small value to achieve
incremental reintegration [14]. Also note that systems based on
queued RPCs, such as Oracle, can make incremental progress
since each RPC is generally run as a separate transaction [161.

Techniques for changing the set of replicas vary widely among
systems. In systems with a client-server or primary-secondary
relationship between replicas, new clients or secondaries can
generally be created by simply contacting the primary site, In
peer-to-peer systems, adding or removing replicas often requlrcs
a system administrator and reconciliation’ between replicas,
Golding uses a group membership protocol that requires a new
replica to find some number of sponsor replicas and a rcthing
replica to wait until notice of its retirement reaches all other
replicas [4]. Notes [lo] and Microsoft Access [S], as far as we
can tell, are like Bayou in that they allow replicas to be created
readily from any existing replica, though it does not appear that

300

the knowledge of new replicas is propagated throughout the
system as in Bayou. Bayou is the first system we know about that
employs version vectors to characterize a replica’s contents,
allows any replica to accept updates, and yet permits lightweight
creation and retirement of replicas.

8. Conclusions
The major contribution of this paper is in the detailed

presentation of Bayou’s protocol for lazily propagating updates
between its weakly consistent replicas along with the rationale for
each design decision and the features enabled by it. The protocol
is practical, implemented, and quite simple. Three basic design
decisions went into Bayou’s anti-entropy protocol: the model of
pair-wise reconciliation between peer replicas, the exchange of
write operations stored in per-replica logs that are compactly
characterized using version vectors, and the propagation of writes
between replicas in an order that is closed with respect to the
writes’ accept, causal, or total order.

Although none of these design decisions in isolation is
particularly novel, together they provide the flexibility necessary
to cope with the diversity of networking environments in
common use today, including unreliable wireless networks, dial-
up modems over telephone lines, the global Internet, and even
“sneakemet”. They permit replicas to make incremental progress
towards their convergence in the face of involuntary
disconnections while giving repIicas control over the pruning of
their individual write-logs. They also support Bayou’s style of
conflict resolution and its session guarantees.

Additionally, Bayou incorporates a new lightweight mechanis?
for creating and retiring replicas that builds on and is compatible
with its anti-entropy protocol. Special creation and retirement
writes propagated via anti-entropy and server identifiers built
from a hierarchy of write-stamps permit repIicas to reconcile any
differences that may exist in their views of the current replica set.

Key to the flexibility of Bayou’s anti-entropy design is the
separation from the protocol itself of the policies for choosing
pairs of replicas to reconcile and at what times. Optimal policies
for choosing anti-entropy partners depend on a number of
complex factors such as the available bandwidth between replicas
and the cost, perhaps in real money, of communication between
them. Admittedly, the current Bayou system uses the most simple
policies imaginable, like random selection. Exploring different
policies and their effect on the rate and cost of overall system
convergence, as well as on the total storage requirements,
remains an area for fertile research.

9. Acknowledgments
Carl Hauser and Brent Welch participated in the design of the

anti-entropy protocol. Susan Owicki, again, provided invaluable
help with the final revisions to this paper. Finally, we thank the
anonymous referees for their thorough comments and suggestions.

10. References
Ul

PI

D. Agrawal and A. Malpani. Efficient dissemination of information in
computer networks. The Computer Journal 34(6):534-541. December
1991.
A. Birrell, R. Levin, R. M. Needham, and M. D. Schroeder. Grape-
vine: An exercise in distributed computing. Communications ofthe

ACM 25(4):260-274, April 1982.

131

r41

I51

[61

t71

Bl

PI

UOI

1111

WI

[I31

1141

1151

WI

[I71

WI

WI

.

1201

WI

A. Demers, D. Greene, C. Hauser. W. Irish, J. Larson, S. Shenker, H.
Sturgis, D. Swinehart, and D. Terry. Epidemic algorithms for repli-
cated database maintenance. Proceea’irtgs Sixth Symposium on Prin-

ciples of Distributed Computing, Vancouver, B.C., Canada, August
1987, pages l-12.
R. A. Golding, A weak-consistency architecture for distributed infor-
mation services, Computing Systems, 5(4):379-405, Fall 1992.
A. Gore& Y. ‘Wang, and M. Deppe. Sybase Replication Server. Pro-

ceedings 1994 ACM SIGMOD Conference, Minneapolis, Minnesota,
May 1994. page 469.
J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replica-
tion and a solution. Proceedings I996 ACM SIGMOD Conference,

Montreal, Canada, June 1996, pages 173-182.
R. G. Guy. J.S. Heidemann, W. Mak, T.W. Page, Jr., G.J. Popek, and
D. Rothmeier. Implementation of the Ficus replicated file system.
Proceedings Summer VSENIX Conference, June 1990, pages 63-71.
B. Hammond. WINGMAN: A replication service for Microsoft
Access and Visual Basic. Microsoft white paper.
A. D. Joseph, A. E delespinasse, J. A. Tauber, D. K. Gifford, and M.
F. Kaashoek. Rover: A toolkit for mobile information access. Pro-

ceedings Fifteenth ACM Symposium on Operating Systems Princi-

ples, Copper Mountain, Colorado, December 1995. pages 156-171.
L. Kalwell Jr., S. Beckhardt, T. Halvorsen, R. Ozzie, and I. Greif.
Replicated document management in a group communication system.
In Groupware: Software for Computer-Supported Cooperative Work,

edited by D. Marca and G. Bock, IEEE Computer Society Press,
1992, pages 226-235.
J. J. Kistler and M. Satyanarayanan. Disconnected operation in the
Coda file system. ACM Transactions on Computer Systems 10(1):3-
25, February 1992.
R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high
availability using lazy replication. ACM Transactions on Computer

Systems 10(4):360-391, November 1992.
i. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM21(7):558-565, July 1978.
L. B. Mummer& M. R. Ebling, and M. Satyanarayanan. Exploiting
weak connectivity for mobile file access. Proceedines Fifteenth ACM

Symposium on Operating Systems Principles, Copp& Miuntain, Col-
orado, December 1995, page-s 143-155.
D. C. Oppen and Y. K. Dalal. The Clearinghouse: A decentralized
agent for locating named objects in a distributed environment. ACM

Transactions on mce Information Systems 1(3):230-253. July 1983.
Oracle Corporation. Oracle7 Server Distributed Systems: Replicated

Data, Release 7.1. Part No. A21903-2, 1995.
S. Sarin and N. A. Lynch, Discarding obsolete information in a reoli-
cated database system. IEEE Transactions on Software Engineeing

SE-13(1):39-47, January 1987.
M. Satyanarayanan, J.J. Kistler. P. Kumar, M.E. Okasaki, E.H. Siegel,
and D.C. Steere. Coda: a highly available file system for a distributed
workstation environment. IEEE Transactions on Computers

39(4):447-459. April 1990.
D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M. The-
imer and B. B. Welch. Session guarantees for weakly consistent repli-
cated data. Proceedings Third International Conference on Parallel

and Distributed Information Systems, Austin, Texas, September
1994. pages 140-149.
D. B. Terry, M. M. Theimer. K. Petersen, A. J. Demers, M. J. Spre-
itzer, and C. H. Hauser. Managing update conflicts in Bayou, a
weakly connected replicated storage system. Proceedings Fifteenth

ACM Symposium on Operating Systems Principles, Copper Moun-
tain, Colorado, December 1995, pages 172-183.
G. T. J. Wuu and A. J. Bernstein. Efficient solutions to the replicated
log and dictionary problem. Proceedings Third ACM Symposium on

Principles of Distributed Computing, Vancouver, B. C.. Canada,
August 1984, pages 233-242.

301

