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Abstract 
Bayou’s anti-entropy protocol for update propagation between weakly 

consistent storage replicas is based on pair-wise communication, the 
propagation of write operations, and a set of ordering and closure. 
constraints on the propagation of the writes. The simplicity of the design 
makes the protocol very flexible, thereby providing support for diverse 
networking environments and usage scenarios. It accommodates a variety 
of policies for when and where to propagate updates. It operates over 
diverse network topologies, including low-bandwidth links. It is 
incremental. It enables replica convergence, and updates can be 
propagated using floppy disks and similar transportable media. Moreover, 
the protocol handles replica creation and retirement in a light-weight 
manner. Each of these features is enabled by only one or two of the 
protocol’s design choices, and can be independently incorporated in other 
systems. This paper presents the anti-entropy protocol in detail, 
describing the design decisions and resulting features. 

1. Introduction 
Weakly consistent replicated storage systems with an “update 

anywhere” model for data modifications require a protocol for 
replicas to reconcile their state, that is, a protocol to propagate the 
updates introduced at one replica to all other replicas. A key 
advantage of weakly consistent replication is that, by relaxing 
data consistency, the protocol for data propagation can 
accommodate policy choices for when to reconcile, with whom to 
reconcile, and even what data to reconcile. In this paper we 
present Bayou’s anti-entropy protocol for replica reconciliation. 
The protocol, while simple in design, has several features 
intended to support diverse network environments and usage. 
scenarios. The contribution of this paper is to demonstrate how 
the anti-entropy design, based on pairwise-communication 
between replicas and the ordered exchange of update operations 
stored in per replica logs, enables this set of features and 
functionalities: 
 Supportfor arbitrary communication topologies: 

the protocol provides the mechanism to propagate updates 
between any two replicas. In turn, the theory of epidemics 
ensures that these updates transitively propagate throughout 
the system [3]. 

 Operation over low-bandwidth networks: 

recon’ciliation is based on the exchange of update operations 
instead of full database contents, and only updates unknown to 
the receiving replica are propagated. 
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Incremental progress: 

the protocol allows incremental progress even if interrupted, 
for example, due to an involuntary network disconnection. 
Eventual consistency: 

each update eventually reaches every replica, and replicas 
holding the same updates have the same database contents. 
Eficient storage management: 

the protocol allows replicas to discard logged updates to 
reclaim storage resources used for reconciliation. 
Propagation through transportable media: 

one replica can send updates to another by storing the updates 
on transportable media, like diskettes, without ever having to 
establish a physical network connection. 
Light-weight management of dynamic replica sets: 

the protocol supports the creation and retirement of a replica 
through communication with only one available replica, 
Arbitrary policy choices: 

any policy choices for when to reconcile and with which 
replicas to reconcile are supported by the anti-entropy 
mechanism. The policy need only ensure that there be an 
eventual communication path between any pair of replicas, 

Other weakly consistent replicated systems support subsets of 
these functionalities. For example, Coda’s reconciliation 
protocols allow server replicas to reconcile with each other, and 
mobile replicas to reconcile with servers, but mobiles cannot 
reconcile amongst themselves [ll]. In Ficus, reconciliation cnn 
occur between any pair of replicas, however server creation and 
retirement requires coordination among all replicas [7]. Oracle 7 
has a two-level hierarchy of replicas: master replicas send thelr 
transactions to all other masters, but cannot forward transactions 
received from other masters; a snapshot replica can only 
reconcile with its specific master, independently of the 
availability of other masters [16]. Gray et al. also proposed a two. 
tier replication model that, in contrast to Oracle’s system, ensures 
convergence of the replicas but dob not allow reconciliation 
between mobile replicas [6]. Golding’s time-stamped anti- 
entropy protocol [4] comes closest to Bayou’s. Many of the 
mechanisms in his design are similar, however he suggests n 
heavier weight mechanism to create replicas and a less aggressive 
approach for replicas to reclaim storage resources. 

The Bayou system places additional requirements on its anti- 
entropy protocol due to its support for conflict detection and 
resolution based on per-write dependency-checks and merge 
procedures [20] and for session guarantees [19]. By presenting 
the protocol in detail, along with the design decisions that went 
into it, this paper shows how the protocol design supports both 
these requirements of the Bayou system, as well as the features 
listed above. 

We believe that all of the features enabled by Bayou’s antl- 
entropy protocol are important. First, because applications and 
users have different requirements for data reconciliation, the 
protocol supports the replica’s ability to choose when to reconcile 
and with whom to reconcile. For example, users of personal 
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information management applications, like address books and 
calendars, can reconcile their databases differently than 
enterprise-wide databases, like the ones used for intranet web- 
sites. Communication can therefore occur at “convenient” times. 
Second, the protocol was designed to effectively support the 
variety of networking and computing environments these 
applications and users may operate in. 

The paper starts with a simple protocol for anti-entropy, 
highlighting the features enabled by this basic design: support for 
arbitrary networking environments, support for low bandwidth 
networks, and incremental progress. It then describes protocol 
extensions that enable other desired features: management of the 
storage resources required for the operations log, propagation 
using transportable media, support for eventual consistency, and 
light-weight management of dynamic replica sets. The paper 
concludes with a general discussion of how the anti-entropy 
protocol’s features can be implemented in other systems, 
potential drawbacks of the protocol, policy choices enabled by 
the protocol, performance measurements, and an expanded 
discussion of related work. 

2. Basic Anti-entropy 
The goal of anti-entropy is for two replicas to bring each other 

up-to-date. In Bayou, the storage system at each replica, also 
called a server, consists of a ordered log of updates, called writes, 
and a database that results from the in-order execution of these 
writes. A server’s lvrite-log contains all writes that have been 
received by that Bayou server either from an application or from 
other servers. Therefore, anti-entropy needs to enable two servers 
to agree on the set of writes stored in their logs. 

For the purpose of this paper, a Bayou write can be thought of 
as a procedure that generates a set of updates to be applied at the 
database. Specifically, a Bayou write consists of three 
components: a set of updates, a dependency check, and a merge 
procedure. The dependency check and the merge procedure of a 
write let each server that receives the write decide if there is a 
conflict and, if so, how to resolve it [20]: 

When a Bayou server first receives a write from a client 
application, the server assigns a monotonically increasing accept- 
srantp to the write. Accept-stamps can be time-stamps or simple 
generation counters. As it propagates via anti-entropy, each write 
carries its accept-stamp and the identifier of the server that 
assigned the stamp. Accept-stamps define a total order over all 
writes accepted by a server and a partial order, which we call the 
accept-order, over all writes in the system. Write A precedes 
write B in the accept-order when both were accepted by the same 
server and write A was accepted before write B. Servers store 
writes in their write-logs in an order that is consistent with this 
accept-order. 

The simplest anti-entropy protocol can now be described. The 
protocol is based on the following three design choices for the 
reconciliation process: 
1. it is a one-way operation between pairs of servers; 
2. it occurs through the propagation of write operations, and 
3. write propagation is constrained by the accept-order. 

Pair-wise communication supports the reconciliation of any 
two servers independently of which other servers may be 
available and of how the network connection between the servers 
is established. The protocol relies on the theory of epidemics to 
ensure that writes eventually propagate to all other replicas [33. 

A Bayou server can choose its anti-entropy partner at random 
or based on other knowledge, like network characteristics. In fact, 
ad-hoc network connections between arbitrary replicas, as 

possible with wireless infrared links, can be easily supported. 
Alternatively, a system could choose to force more structure on 
the communication patterns between replicas, for example, by 
designating master replicas and subordinate replicas that only 
reconcile with their masters or by organizing replicas into logical 
reconciliation rings. Structured communication patterns permit 
accurate information about the state of the replicas to be 
maintained more easily and to be used to optimize 
communication between the replicas. However, by restricting the 
set of servers with which to communicate, update propagation is 
more likely to suffer from communication outages. We opted for 
the peer-to-peer reconciliation model because of the variety of 
possibly changing communication topologies it supports. 

The pair-wise anti-entropy protocol was designed to be uni- 
directional. One server brings another one up-to-date by 
propagating those writes not yet known to the receiving server. 
The advantage of one-way reconciliation is that the process only 
requires an initial exchange of state information, thereafter all the 
protocol’s state is kept at the sending replica and communication 
flows in only one direction, from the sender to the receiver. 

The anti-entropy design is based on the exchange of write 
operations because Bayou’s conflict detection and resolution 
mechanisms require that writes are executed at all replicas. 
Propagating operations, instead of database contents, has other 
advantages. Namely, the amount of data propagated during 
reconciliation is proportional to the update activity at the replicas 
instead of being dependent on the overall size of the data being 
replicated. Thus, when the database size is much larger than the 
database updates, the bandwidth required for the execution of the 
protocol is reduced. Furthermore, the propagation of update 
operations avoids any ambiguity introduced by the creation and 
deletion of replicated objects. Protocols based on the exchange of 
deltas or differences in data values require additional mechanisms 
to correctly handle this ambiguity because the existence of a 
value at one replica and the lack thereof at anothep cannot 
correctly identify whether the value is new or it has been deleted. 
Finally, write operations can easily be stored in a log, which can 
then be used during reconciliation to decide which operations 
need to be propagated. Aside from the creationldeletion 
ambiguity, protocols based on deltas have properties similar to 
those of protocols based on the propagation of update operations. 

Our third design choice, enforcing the partial accept-order 
during anti-entropy, is necessary to maintain a closure constraint 
on the set of writes known to a server, which we call the prejik- 
property. The prefix property states that a server R that holds a 
write stamped Wi that was initially accepted by another server X 
will also hold all writes accepted by X prior to Wi. The prefix- 
property enables the use of version vectors to compactly 
represent the set of writes known to a server. More precisely, the 
entry for another server X in R’s version-vector, R.V(X), is the 
largest accept-stamp of any write known to R that was originally 
accepted from a client by X. 

The basic anti-entropy algorithm, shown in Figure I, updates 
the receiving server R with the writes stored at sending server S. 
This initial protocol assumes that servers retain all writes they 
have ever received. This simplifying, but ifipractical, assumption 
is later relaxed in section 3. During anti-entropy, the prefix 
property and the ensuing use of version vectors enable a server to 
correctly determine which writes are unknown to the receiving 
server R by comparing the accept-stamp of a write in its write-log 
with the entry corresponding to the write’s accepting server in 
R’s version-vector. The algorithm demonstrates the incremental 
transmission of each unknown write from S to R-The reverse 
process, to update S from R, is identical. 
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aati-entmpy(S,R) ( 
Get R.V from receiving server R 
#now send all the writes unknown to R 
w = first write in Swrite-log 
WHILE (w) DO 

IF R.V(w.server-id) c w.accept-stamp THEN 
# w is newfor R 
SendWrhe(R, w) 

w = next write in &write-log 
END 

1 
Figure 1. Basic anti-entropy executed at server S to update receiving server R 

The algorithm is very simple. The sending server gets the timetable [1, 12,211 of which replicas have received what writes, 
version vector from the receiving server; then it traverses its The problem with these approaches is that a single, long- 
write-log and sends the receiving server each write not covered disconnected replica can cause the write-logs at all other replicas 
by that vector. It is worth pointing out that the protocol traverses to grow indefinitely. Satin and Lynch noted this problem and 
the sender’s write-log only once. proposed forcibly removing such sites from the replica set [17], 

A feature of this algorithm is that it allows anti-entropy to be 
incremental. In other words, reconciliation between two replicas 
can make progress independently of where the protocol may get 
interrupted due to network failures or voluntary disconnections. 
When a new write arrives at the receiver it can be immediately 
included in the receiver’s write-log because tbe sending replica 
ensures that the receiving server will hold all writes necessary to 
satisfy the prefix property. If interrupted while sending writes, 
those writes transmitted successmlly to the receiving server can 
thus be processed and stored in the receiver’s write-log. Most 
importantly, during the next execution of the protocol, these 
writes need not be resent and the sending server only propagates 
those writes still unknown to the receiving server. Since the 
ordering in which the writes reach the receiving server is 
important to ensure the prefix property, the anti-entropy protocol 
needs to be implemented over a transport layer that guarantees 
ordered delivery of messages. 

Bayou takes a different approach. In Bayou, each replica can 
independently decide when and how aggressively to prune a 
prefix of its write-log subject to the constraint that only “stable” 
writes get discarded. The notion of write stability is discussed 
below. An important consequence of permitting servers to discard 
writes that may not have fully propagated is that anti-entropy 
between servers that are too far “out of synch” may rcqulre 
transferring the full database state from one server to the other, 
Thus, there is a storage-bandwidth tradeoff based on how 
aggressively replicas prune their logs and how frequently replicas 
perform anti-entropy. This section, after presenting Bayou’s 
actual anti-entropy protocol with support for write-log truncation, 
presents a discussion of this tradeoff. 

3.1. Write Stability 

The basic anti-entropy algorithm has several of the features we 
deem important in a reconciliation protocol: it supports a variety 
communication topologies, it supports a variety of policy choices 
for when and with whom to reconcile, it operates over low 
bandwidth networks, and it makes incremental progress in the 
presence of protocol interruptions. Additionally, as shown in 
section 4, the protocol’s incrementality and pair-wise nature 
make it adaptable for reconciliation through transportable media, 
like floppy disks or PCMCIA storage cards, and an extension of 
the prefix property enables the light-weight management of 
dynamic replica sets. Before discussing these additional 
functionalities we focus on relaxing the algorithm’s reliance of 
ever-growing write-logs. 

A stable write, also called a committed write, is one whose 
position in the write-log will not change and hence never needs to 
be re-executed at that server. Any mechanism that stabilizes the 
position of a write in the log can be used. Details on the benefits 
and drawbacks of several write stabilizing mechanisms have been 
described in a previous publication [20]. 

3. Effective Write-log Management , 
Although very simple, the anti-entropy algorithm presented in 

Figure 1 is based on a generally unreasonable assumption: that 
servers do not discard writes from their write-logs. In practice, 
although disks are continuously becoming cheaper and denser, it 
is unreasonable to assume that replicas can store ever-growing 
logs of operations. In particular, mobile hosts do not have 
unbounded storage. This section shows how servers can 
effectively manage the storage resources of their write-logs. 

Previous work on propagating logged writes observed that a 
write can be discarded from a replica’s log once that write has 
fully propagated to all other replicas. Determining which writes 
have fully propagated can be done by running a’ distributed 
snapshot algorithm to establish a “cutoff’ timestamp [17] or by 
having replicas maintain an acknowledgment vector [4] or 

Bayou uses a primary-commit protocol to stabilize w&es, 
hereby ensuring that the stabilization process does not slow down 
due to lengthy disconnections of some replicas. In this protocol, 
one database replica is designated as the primary replica and its 
role is to stabilize (commit) the position of a write in the log 
when it first receives the write. As the primary commits a write, it 
assigns a monotonically increasing commit sequence number 
(CSN) to the write. The CSN is the most significant factor used to 
determine a write’s position in the log; uncommitted or tentative 
writes have a commit sequence number of infinity. The commit 
sequence numbers and accept-stamps define a new partial order 
over the writes in the system, where write A precedes write B if 
A has a smaller CSN, or if both are uncommitted and were 
accepted by the same server and write A was accepted before 
write B. In this order committed writes are always totally ordered 
amongst themselves, are ordered before any tentative writes, and 
are thereby stable. The CSN information propagates back to all 
other servers through an extension of the anti-entropy algorithm 
described below. When a non-primary replica learns of a write’s 
final CSN, the write becomes stable at that server since the 
replica will previously have learned of all writes with lower 
commit sequence numbers. 

This more complex partial order, called stable-order, preserves 
the prefix property requirement of anti-entropy because: (1) 
servers reconcile uncommitted writes with the primary using the 
same protocol described thus far, hence ensuring that the prefix 
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anti-entropy(S,R) ( 
Get R.V and R.CSN from receiving server R 
#first send all the committed writes that R does not know about 
IF R.CSN < SCSN THEN 

w = first committed write that R does not know about 
WHILE (w) DO 

IF w.accept-stamp c= R.V(w.sezver-id) THEN 
# R has the write, but does not know it is committed 
SendCommitNotification(R, w.accept-stamp, wserver-id. w.CSN) 

EL-SE 
SendWrite(R, w) 

END 
w = next committed write in S.write-log 

END 
END 
w = first tentative write 
#now send all the tentative writes 
WHILE (w) DO 

IF R.V(w.server-id) c w.accept-stamp THEN 
SendWrite(R. w) 

w = next write in S.write-log 
END 

1 
Figure 2. Anti-entropy with support for committed writes (ran at server S to update R) 

property holds at the time writes are committed, and (2) servers 
always propagate committed writes before tentative writes as 
described below. The next subsections show how the anti-entropy 
protocol changes to support write commitment, and how tbe 
stable-order is used to aggressively truncate writes from servers’ 
logs. 

3.2. Propagation of Committed Writes 
The part of a server’s write-log corresponding to committed or 

stable writes can be represented by either another version vector, 
a commit vector, or by the highest commit sequence number 
known to a server, S.CSN. Since committed writes are totally 
ordered by their commit sequence numbers and they propagate in 
this order, the commit sequence number represents the committed 
portion of the write-log in a concise way. The algorithms in this 
section will therefore use S.CSN for this purpose. 

To propagate the commit information of writes, the anti- 
entropy algorithm cannot just test whether a write is covered by 
the receiving server’s version vector. The receiving server may 
have the write, but not know that it is committed. The sending 
server must therefore first inspect all the committed writes that 
the receiving server may be missing. As shown in Figure 2, the 
algorithm starts by comparing the two servers’ highest commit 
sequence numbers. If the sender holds committed writes that the 
receiver is unaware of, it will send them to the receiver. Notice 
that for writes that the receiver already has in tentative form but 
for which it does not know the commit sequence number, only a 
commit notification is sent. A commit notification only includes 
the write’s accept-stamp, server-id, and new commit sequence 
number instead of the entire write. After the committed portion of 
the write log is processed, the same algorithm as before is used to 
send all the new tentative writes to the receiving server. 

3.3. Write-log Truncation 
The anti-entropy protocol allows replicas to truncate any prefix 

of the stable part of the write-log whenever they desire or need to 
do so. The implication of truncating the write-log is that on 
occasion a replica’s write-log may not hold enough writes to 
allow incremental reconciliation with another replica. That is, the 
sending server may have truncated writes from its write-log that 

are yet unknown to the receiver. This can occur, for example, 
when the sending server has received and later truncated 
committed writes that have not reached the receiving replica 
because the receiving replica has been disconnected for a long 
time. The protocol needs to detect and handle this possibility. 

To test whether a server is missing writes needed for anti- 
entropy, each server maintains another version vector, S.0, that 
characterizes the omitted prefix of the server’s write-log; a 
commit sequence number is also maintained for the omitted part 
of the log. A server can easily detect whether it is missing writes 
needed to execute anti-entropy with another server if its omitted 
sequence number, SOSN, is larger than the other server’s 
commit sequence number, R.CSN. If so, there exist committed 
writes that the sending server truncated from its log, and that the 
receiver has not yet received. Under this circumstance, if the two 
servers still wish to reconcile, a full database transfer has to 
occur. That is, the receiving replica must receive a copy of the 
sender’s database that includes all writes characterized by the 
omitted vector. By sending this database the sender makes sure 
that the receiver knows of all the writes needed to proceed with 
the regular, more incremental part of the algorithm. 

Figure 3 presents the anti-entropy algorithm with support for 
write-log truncation. The protocol starts by checking if the sender 
has truncated any needed writes from its write-log. If it has all the 
entries necessary to only send writes or commit notifications, the 
algorithm continues just as described earlier. However, if there 
are missing writes, it sends the contents of the full database to the 
receiving server in addition to the version vector and the commit- 
stamp that characterize the database being sent. Once the 
receiving server receives the database and the corresponding new 
omitted vector and sequence number, it removes all writes from 
its write-log that are covered by the new omitted vector, but more 
importantly, keeps all the writes not covered by this vector, since 
these may be unknown to the sender. After the database transfer, 
the algorithm transition’s back to incrementally sending the 
remaining commit notifications and writes not yet known to the 
receiving replica. 

A couple of characteristics of this algorithm should be pointed 
out. First, sending the complete database during reconciliation 
may require much more network bandwidth than the incremental, 
per write, part of the algorithm. Second, the database transfer is 
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anti-entropy(S,R) ( 
Request R.V and R.CSN from receiving server R 
#check if R’s write-log does not include all the necessary writes to only send writes or 
#commit notifications 

IF (S.OSN > R.CSN) THEN 
#Execute a full database transfer 

Roll back S’s database to the state corresponding to S.0 
SendDatabase(R, S.DB) 
SendVector(R, SO) #this will be R’s new R.0 vector 

SendCSNIR. S.OSN) # R’s new R.OSN will now be S.OSN 

END ’ ’ . 
#now same algorithm as in Figure 2, send anything that R does not yet know about 

IF R.CSN < S.CSN THEN 
w = first committed write that R does not yet know ahout 
WHILE(w) DO 

IF w.acce.pt-stamp c= R.V(w.server-id) THEN 
SendCommitNotification(R, w.accept-stamp. w.server-id, w,CSN) 

ELSE 
SendWrite(R, w) 

END 
w = next committed write in S.write-log 

END 
END 
w = first tentative write in S.write-log 
WHILE(w) DO 

IF R.V(w.server-id) c w.accept-stamp THEN 
SendWrite(R, w) 

w = next write in S.write-log 
END 

Figure 3. Anti-entropy with support for write-log truncation (run at server S to update server R) 

not incremental; the receiving server must obtain the full database 
and the corresponding version vector and commit sequence 
number for reconciliation to succeed. 

3.4. Storage and Networking Resource Tradeoh 
Truncating a server’s write-log trades off potentially increased 

usage of network resources with increased storage requirements 
by one server to bring another server up-to-date. A server either 
retains sufficient writes to update other servers incrementally, or 
truncates writes aggressively, which may cause occasional full 
database transfers. Avoiding a full database transfer is important 
if servers are synchronizing through low-bandwidth or ‘costly 
networks and the database is large. Thus, the challenge is to 
reduce the server’s storage resources occupied by the write-log 
while keeping the chance of having to perform a full database 
transfer low. 

The choice of when to truncate the write-log is left to each 
server’s discretion. One potentially interesting policy would be 
for the server to maintain running estimates of the rate at which 
writes are committed and of the rate at which writes propagate 
through the system, and to use these estimates to establish when 
and how much of the write-log to truncate. Another, much 
simpler, policy is to truncate the write-log when free disk-space 
at the server falls below a certain threshold. Another, more 
conservative, but potentially more accurate, approach would be to 
maintain an estimate of the maximum commit sequence number 
known to all servers. 

3.5. Rolling Back the Write-log 
The write-log of a server needs to be rolled back, and the effect 

of the writes undone from the database, in two different situations 
during anti-entropy: a sender needs to rollback its write-log if a 
full-database transfer is required, while a receiver has to roll its 
log back to the position of the earliest write it receives. Rollbacks 

at the sender’s side should be rare, since we expect full database 
transfers to be rare. 

On the receiver’s side, the write-log is rolled back at most once 
per anti-entropy session. Two optimizations can further reduce 
the overhead of rollback operations. First, if the replica is 
receiving writes from more than one replica at a time, that is, the 
server is involved in multiple anti-entropy sessions, the write-log 
only needs to be rolled back once to the insertion point of the 
earliest write being received. Second, the receiving server dots 
not need to redo the rolled-back writes until the next read from an 
application. Hence, there is a tradeoff between lowering the cost 
of near consecutive anti-entropy sessions and the latency of the 
next read from a client. A replica could therefore roll its write-log 
forward, that is, redo the rolled-back writes, when a certain time 
threshold has passed since an anti-entropy session. Such I\ 
threshold can be based on the frequency of read operations. 

4. Anti-entropy Protocol Extensions 
So far, the paper has presented a reconciliation protocol that 

supports different networking environments and reconciliation 
policies, is incremental, and allows servers to manage the stomp 
resources and performance of their write-logs to their best 
convenience. As mentioned earlier, the simple anti-entropy 
design also enables additional protocol extensions: server 
reconciliation using transportable media, support for session 
guarantees and eventual consistency, and light-weight 
mechanisms to manage server version vectors when replicas can 
be created or retired at any time. These features are enabled by 
the three basic anti-entropy design choices, pair-wise 
communication, exchange of writes and write propagation 
according to specific write orders. As described in this section, 
they also work well with the changes made to the algorithm for 
more effective storage management. 
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file-anti-entropy(tileID, CSN, V) ( 
OutputCSN(fileID, CSN); 
OutputVector(fi1eID.V); 
IF (S.OSN > CSN) THEN 

#Execute a full database transfer 
Roll back s’s database to the state corresponding to S.0 
OutputDatabase(frleID, S.DB) 
OutputVectorQileID. S.0) #this will be the receiver’s new R.0 vector 
OutputCSN(tileID, S.OSN) #the receiver’s new R.OSN will now be S.OSN 
CSN = S.OSN; # CSN now points to XOSN, which will be the receiver’s new CSN at this point 

END 
#write anything that is not covered by CSN and V 
IF CSN < S.CSN THEN 

w = first write following the write with commit sequence number = CSN 
WHILE(w) DO 

IF w.accept-stamp c=V(w.server-id) THEN 
OutputCommitNotification(lileID, w.accept-stamp, w.server-id, w.CSN) 

ELSE 
OutputWrite(fileID, w) 

END 
w = next eommiued write in S.write-log 

END 
END 
w = first tentative write ia S.write-log 
WHILE (w) DO 

IF V(w.server-id) c w.accept-stamp THEN 
OutputWrIte(fileID. w) 

w = next write in S.write-log 
END 
OutputCSN(fileID.S.CSN); 
OutputVector(fIleID,S.V); 

1 
Figure 4. Off-line anti-entropy through transportable media (from S to a fiIe) 

4.1. Anti-entropy through Transportable Media 
In addition to supporting varying networking environments, 

the anti-entropy protocol easily extends to using transportable 
media, like floppy disks, PCMCIA storage cards or even PDAs, 
instead of an actual network connection. 

Figure 4 presents an off-line anti-entropy algorithm that outputs 
information about a server’s write-log and database to a file. The 
main difference between this algorithm and the one discussed in 
section 3 is that instead of sending the data over a network 
connection, the updates are stored into a file. This file is later 
used by another server to incorporate the new updates into its 
write-log. 

The off-line algorithm has additional features not present in the 
on-line version, First, it takes two parameters, a commit sequence 
number and a version vector; these parameters define the 
minimum state required by a potential receiver of the file. Any 
server whose commit sequence number is at least as large as the 
CSN parameter and whose version vector dominates the version 
vector parameter can use the file to update its write-log. Second, 
the algorithm writes out the commit sequence number and 
version vector parameters to allow any server that is presented 
with the file to determine whether it meets the minimal state 
requirements to use the file. Finally, the algorithm also writes out 
the sender’s commit sequence number, S.CSN, and the full 
version vector, S.V. By doing so, it enables receiving servers to 
quickly determine whether the rile holds anything new. 

The algorithm can be modified to test the space remaining on 
the auxiliary storage device each time new data is written. When 
the device fills up the current file is terminated by writing the 

CSN and V version vector corresponding to the last write 
included in the file. Then, a new file-anti-entropy session can be 
started with the closing parameters of the previous session. 
Thereby sets of devices with tiles that incrementally update other 
servers can be generated, a feature that is useful if resource- 
limited auxiliary devices like floppy disks are used for off-line 
reconciliation. 

4.2. Session Guarantees and Eventual Consistency 
In addition to the partial propagation order required by the 

prefix property, Bayou has two additional ordering requirements: 
(1) a causal order to provide session guarantees to applications 
and (2) a total order to ensure eventual consistency of all replicas. 
This subsection shows how both of these stronger write orders are 
easily supported by the anti-entropy protocol; in fact, no changes 
need to be made to any of the algorithms in Figures 1-4. 

Bayou provides applications with session guarantees to reduce 
client-observed inconsistencies when accessing different servers. 
The description of session guarantees has been presented 
elsewhere [19]. However, with respect to anti-entropy, the 
important aspect of session guarantees is that their 
implementation requires writes to be causally ordered. The causal 
order is a refinement of the accept-order, called cuusul-accept- 
order, and specifies that any write A precedes another write B if 
and only if, at the time write B was accepted by some server from 
a client, write A was already known to that server. The causal- 
accept-order is established through the accept-stamps assigned to 
writes when they are first accepted by a server. To this end, each 
server maintains a logical clock [13]. This logical clock advances 
both when new writes are accepted by the server from clients, or 
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when writes with higher accept-stamps are received through anti- 
entropy. Thus, a write accepted by the server will always get a 
higher accept-stamp than all other writes known to that server, 
and through that get ordered after them. Because the ordering 
constraints of the casual-accept-order are stronger and cover 
those defined by the regular accept-order, the prefix property 
continues to hold; furthermore, propagating writes in the causal- 
accept-order is sufficient for the order to be applied at all servers. 
The anti-entropy protocol thus supports the causal ordering 
needed to implement Bayou’s session guarantees without changes. 

In general, without making assumptions about the 
commutativity of writes, a total write order is necessary to ensure 
that replicas holding the same set of writes also hold the same 
database contents. The stable-order introduced in section 3.1 
provides eventual consistency of stable writes. However, we deem 
eventual consistency to be an important property of weakly 
consistent storage systems, which should be achieved even for 
non-stable writes. The accept-order can be easily converted into a 
total order by using the identification of the server that accepted 
the write: accept-stamps are used for the causal-accept-order 
described above and server identifiers are used to break ordering 
ties between writes with equal accept-stamps. To ensure eventual 
consistency, writes are propagated between servers and stored in 
a server’s write-log according to the total order defined by the 
accept-stamp and server-id tuple. The stable-order of section 3.1 
can also be converted into a total order. To convert the stable- 
order into a total order three factors are used, namely cCSN, 
accept-stamp, sewer-id>, with the commit sequence number being 
the most significant factor, and the sever-id again only used to 
break ties among accept-stamps of non-stable writes. 

The ordering imposed on the propagation and execution of 
writes plays two different roles: (1) ensure the prefix property 
that enables the version vector representation of a replica’s state, 
and (2) provide applications with guarantees on the “quality” of 
the data held by a replica. The ordering extensions discussed in 
this subsection, causal and total, address only the second role. 
Furthermore, by being consistent with the ordering requirements 
for the prefix property, no changes were needed to accommodate 
these extensions in the design of the anti-entropy algorithm itself. 
In fact, the anti-entropy algorithms can accommodate any order 
that provides the closure properties required by the prefix 
property. 

4.3. Light-weight Server Creation and Retirement 
In most systems, the creation of a data replica is a heavy weight 

operation. It normally requires the intervention of system adminis- 
trators or the interaction with specific servers. In Oracle, for exam- 
ple, master replicas can only be created at the master definition 
replica, and all existing masters must quiesce during the new mas- 
ter’s creation; snapshot replicas can only be created at master repli- 
cas [16]. Coda requires that the replication factor and the locations 
of servers be specified at volume creation time; although the sys- 
tem supports later addition of replicas, the implementation is based 
on the assumption that it will not be a frequent operation [18]. 
Mobile caches in Coda can only be loaded from replica servers and 
not from other mobile caches. Golding’s mechanisms require that 
K servers be available for server creation [4], so that K-l of these 
servers may fail and at least one server will include the newly cre- 
ated server in its view of what replicas exist. 

Lighter weight mechanisms for server creation and retirement 
enable more flexible usage scenarios. For example, when two col- 
leagues meet on a business trip, one can get a replica of the budget 
plan from the other colleague and immediately start receiving all 
the updates made throughout the budgeting process. The user does 
not have to wait for a connection with either a master server or a 

quorum of replica servers. Lotus Notes has identified the impor- 
tance of this feature and advertises it as one of the key differentia- 
tors of the system [IO]. 

In Bayou new servers can be created, and similarly retired, by 
communicating with any available server. Anti-entropy can easily 
support these operations if the version vectors are updated to 
include or exclude the new or retired servers. Dynamic manage- 
ment of the version vectors needs a mechanism to (1) uniquely 
assign identifiers to newly created servers, and (2) allow any server 
to correctly determine whether a server has been newly created or 
retired. The prefix property and the causal-accept-order requirc- 
ments placed on the propagation of Bayou writes are used to pro- 
vide these mechanisms. Write accept-stamps are used to assign 
server identifiers that exactly determine the location and time of 
each server’s creation. These server identifiers can then be com- 
pared with the version vectors stored at each replica, to determine 
whether a server is new or has been retired. The next two subscc- 
tions describe the creation and retirement of servers in more detail, 

Creation and Retirement Writes 
A Bayou server St creates itself by sending a creufion wile to 

another server Sk, Any server for the database can be used. The 
creation write is handled by Sk just as a write from a client. The 
write is inserted in Sk’s write log, and is identified with the <infin- 
ity, Tk,t, Sk> three-tuple, where Tk,t is the accept-stamp assigned 
by Sk* 

The creation write serves two main purposes. First, as it propa- 
gates via anti-entropy, it informs other servers of the existence of 
Sl. The effect of the execution of the write is that an entry for St is 
added to the server’s version vectors that cover this write. Second, 
it provides St with a server-id that is globally unique and clearly 
identifies the time of its creation. Specifically, eTk,i, Sk> becomes 
St’s server-id. 

The new server also uses the value of flk t + 1) to initialize its 
own accept-stamp counter. This initialization is necessary so all 
writes accepted by the new server follow its creation write in the 
causal-accept-order. 

Note that the recursive nature of the server identifiers affects the 
size of the version vectors. At one end, if all servers are created 
from the first replica for the database, all server identifiers will 
contain only one level of recursion and thus be short. On the other 
hand, if replicas are created linearly, one from the next, server 
identifiers will be increasingly longer, and the version vectors for 
such a database will therefore also be much larger. 

When a server is going to cease being a server for a database, it 
does so by issuing a rerirement write to itself. Again, the write is 
stamped just like any other Bayou write. Its meaning is that the 
server is going out of service. At this point, the server will no 
longer accept new writes from clients. However, the server must 
remain alive until it performs anti-entropy with at least one other 
server so that all its writes, including its retirement write, get prop- 
agated to other servers. 

When a server receives a retirement write, it removes the corre- 
sponding entry from all the server’s version vectors that cover this 
write. The prefix property ensures that a server Sk Will have 
received and processed all writes accepted by Sl before removing 
St from its version vector. 

Logically Complete Version Vectors 
One thorny problem remains, however: when the protocol is cxe- 

cuted at the sending server, it needs to decide if a write is new to 
the receiving server by just comparing the write’s accept-stamp 
with the receiving server’s version vector; specifically, the problem 
occurs when the receiving server’s version vector is missing an 
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entry. The sending server has to correctly determine whether the 
receiver has eliminated the entry because the server corresponding 
to that entry has retired, or whether the receiver has never heard of 
the server associated with the missing entry. What writes to propa- 
gate critically depends on the outcome of this decision. 

More precisely, a server St may be absent from another server’s 
version vector for two reasons: either the server never heard about 
Si’s creation, or it knows that Si was created and subsequently 
destroyed. Fortunately, the recursive nature of server identifiers in 
Bayou allows any server to determine which case holds. Consider 
the scenario in which R sends S its version vectors during anti- 
entropy, and R is missing an entry for Si = <Tk,it Sk>. There are 
two possible cases: 

If R.V(Sk) 2 Tk,i, then server R has seen St’s creation write; 
in this case, the absence of Si from R.V means that R has 
also seen Si’s retirement. S can safely assume R knows that 
server Si is defunct, and does not need to send &y new 
writes accepted by Si to R. 

If R.V(Sk) c Tk,i, then server R has not yet seen S$ creation 
write, and thus cannot have seen the retirement either. S 
therefore needs to send R all the writes it knows that have 
been accepted by Sk 

Note that this scenario assumes that R.V includes an entry for 
Sk Since multiple servers may retire or be created around the 
same time, R’s version vector may be missing entries for both Si 
and Sk in the example used above. Fortunately, the presence of an 
entry for Sk is not essential to identify retired servers. The solution 
is based on the recursive nature of the server identifiers. Imagine a 
CompleteV vector that extends the information stored in the V 
vector to include timestamp entries for all possible servers. A 
recursive function can compute entries for this extended vector: 

COmpleteV(Si = <Tk,i, Sk>) = 
Wi) if explicitly available 
plus infinity if Si = 0, the first server 
plus infinity if Compk?teV(Sk) 2 Tk,i 
minus infinity if COmpkteV(&) -z Tk,i 

A value of minus infinity indicates that the server has not yet 
seen Si’s creation write, and plus infinity indicates that the server 
has seen both St’s creation and retirement writes. A server can use 
the CompleteV function as defined above to always correctly 
determine which writes to send during anti-entropy. 

The dynamic management of version vectors allows a server to 
create itself by contacting one server for the database. After issu- 
ing its creation write, the newly created server needs to perform 
anti-entropy with the server that just created it. Through this anti- 
entropy session the newly created replica will itself hold its cre- 
ation write. Note that the new server’s first anti-entropy session is 
likely to include a full database transfer. After the anti-entropy ses- 
sion between the new server and its creating replica, the creation of 
a replica can tolerate any other failure, because, by virtue of its 
server-id and version-vector, the new server holds all the informa- 
tion it needs to positively identify its creation. 

5. Discussion 
This paper has presented the design of the anti-entropy protocol 

in a series of steps, each focusing on the features enabled by 
refinements or extensions of the basic three anti-entropy building 
blocks: pair-wise communication, exchange of operations, and 
the ordered propagation of operations. The presentation has been 
framed in the context of Bayou and its requirements. This section 
discusses the anti-entropy protocol independently of the Bayou 
system. It starts with a deconstruction of the protocol, pointing 

out which of the protocol’s properties enable each of anti- 
entropy’s features and how these features can be provided in 
systems that were designed with some, but not all, of the same 
components. The section continues by highlighting some of the 
drawbacks of the design presented in Sections 2-4. Finally, the 
discussion focuses on some of the policy choices and tradeoffs 
enabled by the anti-entropy design and the security issues raised 
by the use of a peer-to-peer model of update propagation. 

5.1. Implications for Other Systems 
Table 1 presents the dependencies between features of the anti- 

entropy reconciliation protocol and its design components. 
Marked entries in the table indicate a dependency between a 
feature and a design choice. The high-level message of this table 
is that each of the protocol’s features depends only on a few 
design choices, and that many features can be provided 
independently. 

The unidirectional peer-to-peer reconciliation model supports 
reconciliation over arbitrary communication topologies and a 
wide variety of policy choices of when and with which replica to 
reconcile. Both of these features co-exist independently of the 
protocol’s mechanisms to establish what data to reconcile, the 
formats used for update propagation, and the order in which data 
propagates in the system. 

The protocol’s operation over low-bandwidth networks is 
enabled through reconciliation based on the propagation of 
update operations. Low-bandwidth networks can be similarly 
accommodated by protocols that exchange deltas or differences 
in the replicas’ values. Other systems can reconcile over low- 
bandwidth networks using either update or delta-based 
techniques, independently of whether they limit the 
communication patterns between replicas or whether they impose 
particular order on the propagation of the updates or deltas. 

Update propagation between replicas can make incremental 
progress if an order can be established over the data to be 
reconciled. The minimum requirement is a partial order over the 
updates introduced throughout the system. The peer-to-peer 
model facilitates the incremental progress of the reconciliation 
protocol because determining which data needs to be reconciled 
depends only on the state of two replicas. The incremental nature 
of the protocol is also facilitated by the propagation of operations 
or deltas because the unit of propagation is small. Again, 
incremental progress can be provided independently of the 
mechanisms provided by the system for other features like data 
consistency and replica set management. 

Anti-entropy’s mechanism to cope with the aggressive 
reclamation of storage resources depends on the stabilization of 
some prefix of the operations-log. Any mechanism to stabilize 
the order of operations and to propagate this information back to 
the rep1ica.s is sufficient for this purpose. 

Reconciliation using floppy disks or other transportable media 
can be supported by systems that structure the reconciliation 
process as a one-way protocol and that provide an ordering over 
the data to be reconciled. In fact, systems that provide 
incremental reconciliation protocols are likely to be well suited to 
also provide file based reconciliation mechanisms. 

Light-weight creation and retirement of servers, the last feature 
introduced for the anti-entropy protocol, depends only on the use 
of the causal-accept-order defined over updates generated in the 
system. A system can adopt this technique as long as its 
reconciliation mechanisms enforce such an ordering during 
propagation so that version vectors can be used for state 
representation and operations have a causal relationship. Also, an 
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Table 1: Features enabled by specific anti-entropy design components 
* Small marks indicate that the feature is facilitated by the design choice, but does not depend on it. 
** Eventual consistency can be supported with the incremental protocol by either establishing a total order on all updates, making operations 

commutative, or by enforcing a total order on the propagation of updates that are part of the stable prefix. 

equivalent of the creation and retirement writes must be provided. 
However, it is not necessary for these systems to base their 
reconciliation protocol on operation exchanges per se. 

In summary, one of the strengths of the anti-entropy protocol 
design is that many of its features can be reproduced by other 
systems, even though they may diverge in the design choices for 
other functionalities. 

5.2. Disadvantages 
The variety of features enabled by the anti-entropy protocol 

result from each replica’s ability to reconcile with any other 
replica in the system, and to do so by only consulting each other’s 
version vectors and the sending, server’s write-log. The 
drawbacks of the anti-entropy design-are associated exactly with 
the potential sizes of these two data structures. 

The version vectors used for the-anti-entropy protocol need an 
entry for each replica in the system. The size of the vectors thus 
grows in proportion to the number of replicas and the complexity 
of the replica creation pattern. When the number of replicas of a 
database is large compared to the update activity in the system, 
the cost of exchanging version vectors during an anti-entropy 
session can become a dominating performance factor. However, 
as shown in section 6, when servers get created in well-behaved 
patterns, the version vector size does not have a significant 
impact on anti-entropy performance for replication factors of a 
few thousand. 

To satisfy Bayou’s propagation order requirements, each server 
must retain all tentative writes in its write-log. Log compaction, 
such as the removal of entries that first insert and later delete an 
object from the database, cannot be used. Each server therefore 
has to keep all the writes it has received until it is notified of the 
writes’ commitment. Hence, if the update activity of the database 
is large while the commit rate is low, the size of a server’s write- 
log can grow large. 

5.3. Anti-entropy Policies 
Four types of policies are enabled by the mechanisms of the 

anti-entropy protocol: policies for when to reconcile, policies for 
choosing with which replicas to reconcile, policies for deciding 
how aggressively to truncate the write-log, and policies for 
selecting a server from which to create a new replica. The 

different policy choices affect not only the performance and cost 
of the anti-entropy process but also how quickly updates 
propagate to other replicas, how up-to-date a replica is, how large 
the write-log gets, and how quickly writes stabilize. 

Potential policies for when to reconcile a replica include: 
periodic reconciliation, manually triggered reconciliation, and 
system triggered reconciliation. In other words, a replica can 
communicate with other replicas at recurring intervals, users can 
explicitly activate the reconciliation process, and anti-entropy can 
be initiated by servers when certain system characteristics are 
met. For example, a server may initiate anti-entropy when a 
network link becomes available, when it detects the bandwidth is 
above some threshold, when the CPU load is down, or when its 
write-log is growing large and committing a series of writes 
becomes necessary. In general, increasing the frequency of anti- 
entropy among servers increases the rate of update propagation, 
the degree to which servers are up-to-date, and the rate at which 
writes stabilize but at the expense of greater bandwidth 
consumption due to protocol overheads. 

Similarly, policies for choosing with whom to perform anti- 
entropy can depend on multiple factors: which other replicas arc 
reachable, the network characteristics of the connection to these 
replicas, the up-to-dateness of the replicas, whether the replicas 
have truncated too, many entries from their logs, and which 
replica is serving as the primary. Policy choices for anti-entropy 
partners, like those for when to reconcile, generally trade off 
bandwidth usage against propagation rates. Previous work on 
analyzing epidemic-style algorithms, like those used in Bayou, 
has shown that a judicious choice of anti-entropy partners can 
dramatically reduce the total traffic required to propagate 
updates, while yielding only modest increases in the propagation 
delay [3]. The key is to favor nearby servers and to avoid 
overloading slow network links. Golding also explored biasing 
the selection process to favor nearby anti-entropy partners [4]. 

As discussed in section 3.4, policies to decide how aggressively 
to truncate the write-log trade off storage and networking 
resources needed during anti-entropy. Very aggressive write-log 
truncation may cause lengthy anti-entropy sessions between some 
servers because of the need to do full database transfers. Observe 
that write-log truncation policies can be associated with groups of 
replicas. Within a group, a few replicas may be designated as the 

296 



servers of choice with whom to reconcile; these replicas could 
retain more writes in their write-logs to expedite anti-entropy 
with replicas inside and outside of the group, allowing other 
replicas in the group to reclaim storage more aggressively. 

Finally, policies used to select a server from which to create a 
new replica can affect the performance of the anti-entropy 
protocol as shown in section 6. When several servers are 
available to create a new replica, their respective server identifier 
lengths should be considered in addition to the other 
characteristics of these replicas, like up-to-dateness, connection 
bandwidth, and completeness of their write-logs. 

5.4. Security 
In addition to the policies discussed thus far, the level of 

security enforced during the reconciliation process can 
significantly affect its performance. The peer-to-peer model of 
the anti-entropy design has a variety of security implications. 
Replicas may have different levels of trust in other replicas and in 
clients. The trust relationship may even change depending on the 
location of a replica, for example, if inside or outside a firewall. 
The security model may not want to depend on third party 
authorization services to avoid additional networking 
requirements. If operations need to be authorized at all servers, 
security me&data, like certificates, may need to propagate with 
the operations. The higher the level of security that is required, 
the more security related operations need to be executed during 
the reconciliation process. 

The Bayou implementation relies on digital certificates and a 
hierarchy of trust delegations to implement security. Before 
untrusted Bayou replicas reconcile, they authenticate each other. 
In addition, writes include certificates to authorize database 
accesses for a final time when committed at the primary. Each of 
these security measures add to the reconciliation times of fully 
secured Bayou databases. 

6. Performance Evaluation 
The implementation of the anti-entropy algorithms in Bayou 

consists of 2846 lines of POSIX-compliant C code. The 
implementation relies on an existing write-log implementation 
(1730 lines), a database manager (14768 lines), and utility 
routines to manipulate version vectors, server identifiers, and 
write stamps (1081 lines). The implementation also relies on a 
runtime environment with support for user-level threads, garbage 
collection, and an RPC package. In this section we present an 
evaluation of the performance of this implementation, which runs 
unchanged on both SunOS 4.1.3 and Linux 2.0 platforms. 

In summary, the analysis and measurements in this section 
show that Bayou’s anti-entropy protocol performs as expected: 
 An anti-entropy session propagates only writes unknown to 

the receiver, and hence performs as a linear function of the 
number of such writes and the available network bandwidth; 

 While traversing its write-log, the sender spends only a 
minimal amount of time deciding which writes to propagate; 

 The bulk of the anti-entropy algorithm execution time is spent 
on the network and applying the newly received writes to the 
write-log and database of the receiver; 

 Version vector storage requirements grow between linearly 
and quadratically with the number of replicas, depending on 
the pattern in which servers are created from others; 

 The simplest implementation of checking whether a write is 
covered by a version vector takes time between linear and 
cubic to the number of servers, depending on how the servers 
are created. 

6.1. Experimental Setup 
The measurements were taken for BXMH, a version of the 

popular EXMH e-mail application that uses Bayou instead of a 
file system to store mail messages. Each experiment measures the 
time to run the anti-entropy protocol between two replicas of the 
mail database. In all experiments, only committed writes are 
propagated, and each write inserts a new e-mail message into the 
database. In addition, for each anti-entropy session the size of the 
propagated writes, or e-mail messages, is held constant. Results 
were collected for two message sizes: 3000 byte messages and 
100 byte messages; the message sizes includes both the headers 
and the message bodies. The large size roughly corresponds to 
the median size of mail messages. While the small messages were 
artificially constructed, the large messages correspond to real 
messages received by one of the authors, either truncated or 
extended to be 3000 bytes long. 

Two platforms were used in the experiments: SPARCstation- 
10s running SunOS 4.1.3 (labeled SS in the graphs), and 486- 
based laptops running Linux 2.0 (labeled 486); all machines are 
clocked at SOMHz. The file system used to store the replica’s 
write-log on the SPARCstations is NFS, whereas the laptops use 
UFS. Two types of network connections link the replicas in these 
experiments: a one hop, 10 Mbps ethernet connection, and a PPP 
(point-to-point protocol) connection over a 9.6 Kbps modem and 
then two ethernet hops to the second server within a firewall. In 
practice, the achievable bandwidth over the modem reaches up to 
26.2 Kbps due to compression. 

Each measurement was taken at least five times, for the faster 
experiments sometimes up to ten times. All figures present the 
averages over all runs. They include error bars if these do not 
clutter the presentation, otherwise standard deviations are 
reported in the captions. 

6.2. Anti-entropy Execution Times 
Figure 5 demonstrates that the execution time of the anti- 

entropy protocol is a linear function of the number of new writes 
being propagated. The slope of the function depends on the size 
of the messages being exchanged and the network bandwidth 
available for reconciliation. 

The range of performance observed for anti-entropy of 3000- 
byte e-mail message writes starts with two servers running on the 
SPARCstations communicating over the ethernet, which requires 
2.26 seconds to propagate the first write and a little under 5 
seconds for each additional 100. At the other extreme, for the 
laptop and modem, it takes 7.16 seconds for the first write and 
about 150 seconds for each additional 100 writes. 

These numbers have significant room for improvement since 
each Bayou write that adds an e-mail message to the BXMH 
database currently has two substantial data overheads: 520 bytes 
for the public key of the principal that is updating the database, 
which is included for access control purposes; and 1316 bytes of 
update schema information and data cell padding. These update 
schema and cell padding overheads are unnecessarily large; 40% 
of the overhead corresponds to the ASCII strings of the column 
names of each field being updated, while the remaining fraction 
of the 1316 bytes are zero filled to pad data cells because 
SunRPC represents everything by an integral number of 4-byte 
words. As shown below, more sophisticated representations for 
update schema and cell padding would substantially improve the 
performance of anti-entropy over the modem. Similarly, systems 
with different access control policies or mechanisms could 
obviate the need to transmit public keys with every write and, 
with that, also reduce the overall communication overhead. 
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Figure 6. Anti-entropy execution time breakdown for the propagation of 100 writes 
(standard deviations on all total times are within 2.2% of the reported numbers) 

To further analyze the performance of the algorithm, we broke 
down the executiojl time of anti-entropy sessions that propagate 
100 writes between two replicas. Each of the bars in Figure 6 
corresponds to a different experimental configuration. The labels 
indicate on which platform the receiving replica ran, what 
network connection was used, and which size messages were 
propagated. In all cases the sending replica ran on a 
SPARCstation, which does not affect the performande of anti- 
entropy since, as the cost breakdowns show, the overheads at the 
sending replica are minimal. 

As figure 6 shows, the factors that contribute the most to the 
performance of the anti-entropy interactions are: 
 Network transfer: the most significant overhead of the anti- 

entropy sessions corresponds to the actual transmission of the 
writes. This phase includes the marshalling and unmarshalling 
of the writes being propagated, as well as the time on the 

‘network itself. In the graph, the network transfer time is 
subdivided into four categories: time to marshal1 and 
unmarshall the RPC data, time related to transfer actual 
message information, time to transmit each write’s public key 
and the overhead to transmit the update schema information 

I padding 

. 

and data padding for each write. As mentioned earlier, systems 
with different access control mechanisms and more efficient 
schema and padding implementations could eliminate a 
substantial part of the communication overhead, particularly In 
the modem cases. 
The-figure also shows that the bandwidth over the ethernet 
between the SPARCstations is about double that achieved 
between the laptop and the SPARCStation; the bandwidth in 
the former case varied between 4.6 and UMbps, while the 
laptop’s ethernet connection only achieved 2.4-3,lMbps. The 
observed bandwidth over the modem varied between 23.3 and 
26.2Kbps for the communication of the two sets of 100 writes. 
Anti-entropy setup: during this step the sender locates other 
replicas using the name service, sets up the RPC handle to 
communicate with the receiving replica, and performs the 
challenge response protocol that is used in Bayou to mutually 
authenticate replicas before they engage in the actual 
propagation of writes. The last response of the authentication 
protocol also includes the version vector state information 
from fhe receiving replica. This setup time accounts for most 
of fhe time it takes to transmit one write. For 3000 byte 
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Figure 7. 
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Network independent anti-entropy algorithm components for the propagation of 100 writes 
(standard deviations on all total times are within 2.9% of the reported numbers) 

messages the setup time in the ethernet case is 2.08 seconds 
and in the modem case 4.63 seconds, which corresponds to 65 
88% of the first write propagation times reported earlier. 

 Applying the newly received writes at the receiver: the last 
observable overhead in Figure 6 is due to the processing of the 
received writes at the receiving replica, both incorporating the 
writes into the write-log and applying them to the database. 

Since the network transfer time dwarfs most of the other 
execution time components of anti-entropy, Figure 7 shows the 
smaller overheads of the algorithm; they exclude the network 
transfer time and the anti-entropy setup time. We chose not to 
include the setup time because it involves operations such as 
authentication, which other implementations may choose to 
exclude, and RPC initialization, which can be implemented 
differently by other systems. These smaller components also 
correspond to the network independent portion of the anti- 
entropy algorithm. 

Of these network independent overheads, the largest 
component corresponds to inserting all newly received writes in 
the receiver’s write-log. Figure 7 breaks that operation down into 
four subcomponents: canonicalizing of the new writes for string 
sharing purposes, marshalling the new writes to serially write the 
in-memory data structures out to disk, the actual disk I/O time, 
and the transactional overhead to manipulate the write-log. 
Bayou’s current implementation is based on an in-memory 
database and string canonicalization is necessary to reduce 
memory overheads, but may not be needed in other systems. The 
marshalling implementation is not optimized either. We believe 
that the canonicalizing and marshalling steps have ample 
opportunity for performance improvements. 

The second largest cost component shown in Figure 7 
corresponds to applying the 100 newly received writes to the 
receiver’s database. This time ranges between 33.5 msec. on the 
SPARCStation and 959 msec. on the laptop. Database 
performance will necessarily vary depending of the database 
manager used in the system’s implementation. These numbers 
should therefore only be considered as one performance example. 

Finally, Figure 7 shows that the time spent in the algorithm to 
determine which writes are new to the receiving replica is 
negligible, taking as little as 11 msec. and only a maximum of 42 
msec. in these experiments, in which all writes are unknown to 
the receiver. Separately we also measured the time for a sending 
server to traverse 100 entries of its write-log when all of these 
writes are already known to the receiver. For all the server pairs, 
network combinations, and write sizes reported, this time is less 
than a tenth of a second. 

6.3. Effect of Server Creation Patterns 
As mentioned in section 4.3, the space required to represent a 

version vector depends on the pattern of server creations. To be 
concrete, the representation used ‘on the wire” in our RPC 
protocol is the SunRPC representation of a sequence of <server-id, 
accept-stamp> pairs. This representation takes 

4+12N+ ; SlSil 
i=l 

bytes for a vector of N servers, where ISil is 0 for the initial server 
of a system and 1 + ISkl when Si is created from server Sk. 
Accept-stamps are 8 bytes long. In the most storage efficient 
case, all servers are created from the initial one, and the version 
vector representation requires 20N - 4 bytes, or 20 Kilobytes for 
1000 servers. In the least storage efficient case, servers are 
created in one long chain, and the version vector representation 
requires 4NA2 + 8N + 4 bytes, or 4 Megabytes for 1000 servers. 

The time to test whether a given write is among those 
represented by a version vector may, in the worst case, grow 
cubically. This time analysis is based on a very simple 
implementation that uses a list data structure for the version 
vector representation. The three multiplicative factors result 
from: (1) traversing the list representation of the version vector, 
(2) comparing the server identifiers of each entry in the list with 
the server-id of the write, and (3) if an entry for a server is not 
present, recursively calculating CompleteV. More sophisticated 
data structures like hash tables with a one way hash function 
could be used instead, making the time linear. 

Figure 8.a shows that the execution time of anti-entropy is a 
linear function of the number of servers in the system for the least 
costly server creation pattern. It also shows that 1000 servers can 
be supported easily. On the other hand, as shown in Figure 8.b, 
execution times grow quadratically in the most costly server 
creation pattern. The cubic factor does not appear in Figure 8.b 
because no servers had been retired from the system. 

The measurements in Figure 8 correspond to the propagation of 
100, 3000-byte messages between SPARCstations over the 
ethernet connection. The measured execution times include both 
the writes accept stamps to version vector comparisons and the 
marshalling and network time for the initial back-flow of the 
receiver’s version vector. In comparison, the numbers reported in 
section 6.2 correspond to a system with three replicas. 

If the size of version vectors causes performance problems due 
to exceedingly long server-identifiers, the lightweight server 
creation and retirement can be used to institute practical policies 
to limit the number and lifetime of servers whose creation was far 
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a. Minimal server IDS b. Maximal server IDS 

Figure 8. Anti-entropy execution time for 100 writes as a function of the number of replicas 

removed from the initial server. For example, a server can 
recreate itself with a smaller identifier if it locates another server 
with a smaller identifier than the one of the server’s original 
creator. This process requires the jssuance of a retirement write, a 
new creation write, and anti-entropy with the new creator; it can 
be optimized to reuse the server’s existing write-log and database. 

7. Related Work 
A number of research and commercial systems have used weak 

consistency replication and propagated updates among replicas in 
a lazy fashion. Each of the individual features of Bayou’s anti- 
entropy protocol have almost certainly appeared in previous 
systems in some form. Interesting differences lie in the 
implementation details about what information gets exchanged 
between replicas, what data structures are used to keep track of 
other replicas and the state of these replicas, what communication 
patterns are allowed between replicas, and so on. Unfortunately, 
detailed information about how other systems reconcile their 
replicas is difficult to obtain, especially for commercial products. 
One contribution of this paper is describing a reconciliation 
protocol in detail along with the design decisions that went into 
it. In this section, we discuss how other systems’ protocols 
compare to Bayou’s based on the sketchy information available. 

Grapevine, one of the earliest weakly replicated systems, 
propagated updates via electronic mail [2]. Electronic mail is not 
completely reliable, however, so the product version of 
Grapevine, called Clearinghouse [15], added a background anti- 
entropy process in addition to mail delivery. It was later realized 
that epidemic style algorithms, like Clearinghouse’s anti-entropy, 
could be used by themselves’to fully propagate updates [3]. Pair- 
wise reconciliation of replicas is currently used in several systems 
besides Bayou, including Notes [IO], Ficus [7], and refdbms, 
which uses Golding’s timestamped anti-entropy protocol [4]. 

Rather than a peer-to-peer model in which any replica can 
contact any other replica to reconcile their data, some systems 
organize replicas into a hierarchy where a replica only exchanges 
updates with its parent or children. Examples of this are the client- 
server reconciliation protocols in file systems like Coda [I 1] and 
distributed object systems like Rover [9], and also the primary- 
secondary or master-snapshot protocols in database management 
systems like Oracle [16] and Sybase [5]. Due to their simplified 
communication patterns, these systems can more easily maintain 
accurate information about the state of the replica(s) with which 
they exchange updates. However, update propagation is more 
affected by communication outages. 

In many systems using lazy replication, the information 
exchanged between replicas is based on data objects with 

associated update timestamps or version vectors. This is true for 
Grapevine [2], Clearinghouse [15], Notes [lo], and Microsoft 
Access [LX]. File systems like Coda [lg] and Ficus [7] exchange 
updated files between servers or between clients and servers. The 
notion of reconciling logs of update operations held at various 
replicas, as is done in Bayou via the anti-entropy protocol, has 
been discussed for some time in the literature [1, 17, 211 and 1s 
used in some commercial database systems [5, 161. Oracle’l, for 
instance, uses asynchronous RPCs to propagate transactions 
between a master and its snapshots or other masters [16]; it does 
not, however, allow these transaction to propagate through 
intermediary servers. Rover also uses operations as lhe unit of 
reconciliation by queuing RPC invocations that are eventually 
applied to the master copy of an object [9]. 

Systems that propagate updated data objects need an additional 
mechanism to handle deleted objects. For example, 
Clearinghouse servers maintained and exchanged ‘death 
certificates” for deleted objects [3, 151. Protocols have been 
devised to decide when replicas can safely discard deleted data 
[17]. When update operations rather than data are used for 
reconciliation, deletions are handled automatically as just another 
type of update operation, and servers can immediately reclaim the 
space used by deleted data items. 

A goal in the design of Bayou’s anti-entropy protocol was to 
ensure that servers can make progress even if the protocol is 
disrupted by the loss of a network connection. That is, a server 
should be able to use and propagate to other replicas any updates 
that it receives even if the protocol does not complctc 
successfully. Some systems run their reconciliation process as an 
atomic transaction and hence lose the incremental property. Coda 
has added a trickle reintegration protocol for use by weakly- 
connected clients; while this protocol is atomic, it includes the 
notion of a chunk size that can be set to a small value to achieve 
incremental reintegration [14]. Also note that systems based on 
queued RPCs, such as Oracle, can make incremental progress 
since each RPC is generally run as a separate transaction [ 161. 

Techniques for changing the set of replicas vary widely among 
systems. In systems with a client-server or primary-secondary 
relationship between replicas, new clients or secondaries can 
generally be created by simply contacting the primary site, In 
peer-to-peer systems, adding or removing replicas often requlrcs 
a system administrator and reconciliation’ between replicas, 
Golding uses a group membership protocol that requires a new 
replica to find some number of sponsor replicas and a rcthing 
replica to wait until notice of its retirement reaches all other 
replicas [4]. Notes [lo] and Microsoft Access [S], as far as we 
can tell, are like Bayou in that they allow replicas to be created 
readily from any existing replica, though it does not appear that 
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the knowledge of new replicas is propagated throughout the 
system as in Bayou. Bayou is the first system we know about that 
employs version vectors to characterize a replica’s contents, 
allows any replica to accept updates, and yet permits lightweight 
creation and retirement of replicas. 

8. Conclusions 
The major contribution of this paper is in the detailed 

presentation of Bayou’s protocol for lazily propagating updates 
between its weakly consistent replicas along with the rationale for 
each design decision and the features enabled by it. The protocol 
is practical, implemented, and quite simple. Three basic design 
decisions went into Bayou’s anti-entropy protocol: the model of 
pair-wise reconciliation between peer replicas, the exchange of 
write operations stored in per-replica logs that are compactly 
characterized using version vectors, and the propagation of writes 
between replicas in an order that is closed with respect to the 
writes’ accept, causal, or total order. 

Although none of these design decisions in isolation is 
particularly novel, together they provide the flexibility necessary 
to cope with the diversity of networking environments in 
common use today, including unreliable wireless networks, dial- 
up modems over telephone lines, the global Internet, and even 
“sneakemet”. They permit replicas to make incremental progress 
towards their convergence in the face of involuntary 
disconnections while giving repIicas control over the pruning of 
their individual write-logs. They also support Bayou’s style of 
conflict resolution and its session guarantees. 

Additionally, Bayou incorporates a new lightweight mechanis? 
for creating and retiring replicas that builds on and is compatible 
with its anti-entropy protocol. Special creation and retirement 
writes propagated via anti-entropy and server identifiers built 
from a hierarchy of write-stamps permit repIicas to reconcile any 
differences that may exist in their views of the current replica set. 

Key to the flexibility of Bayou’s anti-entropy design is the 
separation from the protocol itself of the policies for choosing 
pairs of replicas to reconcile and at what times. Optimal policies 
for choosing anti-entropy partners depend on a number of 
complex factors such as the available bandwidth between replicas 
and the cost, perhaps in real money, of communication between 
them. Admittedly, the current Bayou system uses the most simple 
policies imaginable, like random selection. Exploring different 
policies and their effect on the rate and cost of overall system 
convergence, as well as on the total storage requirements, 
remains an area for fertile research. 
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