






rived from a three-month trace of the OneDrive service.
OneDrive serves hundreds of millions of users and stores
their objects which include documents, photos, music,
videos, configuration files, and more. The trace includes
all reads, writes, and updates to all objects between Jan-
uary 1 and March 31, 2016.
Large Objects Dominate: The size of the objects

varies significantly, ranging from kilobytes to tens of
gigabytes. While the number of small objects vastly ex-
ceeds that of large objects, the overall storage consump-
tion is mostly due to large objects. Figure 2a presents the
cumulative distribution of storage capacity consumption
in terms of object size. We observe that less than 0.9% of
the total storage capacity is occupied by objects smaller
than 4MB. This suggests that, to optimize storage cost,
it is sufficient for Giza to focus on objects of 4MB and
larger∗. Objects smaller than 4MB can simply use the
existing geo-replication option. This design choice re-
duces the overhead associated with erasure coding of
small objects (including meta-data for the smaller ob-
ject). As a result, all following analysis filter out objects
smaller than 4MB.
Object Temperature Drops Fast: A common usage

scenario of OneDrive is file sharing. Objects stored in
the cloud are often shared across multiple devices, as
well as among multiple users. Therefore, it is typical
to observe reads soon after the objects are created. To
this end, Figure 2b presents the cumulative distribution
of bytes read in terms of object age when the reads
occur†. It is worth pointing out that 47% of the bytes
read occurred in the same day of object creation, 87%
occurred within the same week, and merely less 2%
occurred beyond one month. Since the temperature of
the objects drops quickly, caching objects can be very
effective (more below).

total reads (B) / writes (B) 2.3×
no caching 1.15×

cross-DC reads / writes caching (day) 0.61×
with Giza caching (week) 0.18×

caching (month) 0.05×

Writes Dominate with Caching: The above table
presents the effectiveness of caching. The ratio between
the total amount of bytes reads to writes is 2.3×. As
illustrated in Section 2.3, Giza incurs 1× and 0.5× cross-
DC network traffic on writes and reads, respectively.
Hence, the ratio between cross-DC traffic due to reads
and writes is 1.15×. Given the temperature analysis, it
is most effective for Giza to cache objects for a short
period of time within one single DC. Serving reads from

∗Objects of tens of Gigabytes are divided into 4MB chunks before
storing in cloud storage back-end.

†The analysis focuses on all the objects created during the three-
month period. Hence, the object age is capped at three months.

the cachingDC dramatically reduces the cross-DC traffic
due to reads. Indeed, when objects are cached for one
day, the cross-DC traffic attribute to reads vs writes re-
duces to 0.61×. When objects are cached for one month,
the ratio reduces to negligible 0.05×, in which case the
cross-DC traffic is completely dominated by writes. Ad-
mittedly, caching the entire object also raises the total
storage overhead to 2× (same as geo-replication) for a
short period of time.

# of Versions 1 2 ≥ 3
Percentage 57.96% 40.88% 1.16%

Concurrency is Rare, but Versioning is Required:
The above table presents how often objects are updated
and whether versioning is required. We observe that
57.96% of the objects are written once and never up-
dated during the three-month period. For the remain-
ing, 40.88% of the objects are updated exactly once and
merely 1.16% are updated more than twice. In addition,
we observe that only 0.5% of the updates are concurrent
(within 1 second interval). This suggests that concurrent
updates of same objects are rare in Giza (albeit possible).

Deletion is Not Uncommon: It turns out that
OneDrive customers not only create new objects, but
also delete old objects from time to time. To character-
ize how often objects are deleted and how long they have
been stored upon deletion, we follow all the objects that
were created during the first 3 months in 2016 and match
them with object deletion trace up to one year after cre-
ation. For all the objects whose matching deletion trace
records exist, we calculate the age of the objects upon
deletion. Figure 2c plots the cumulative distribution of
storage capacity consumption against object age‡.

We observe that a non-trivial portion of the objects
were deleted within one year after their creation. These
objects account for 26.5% of the total consumed storage
capacity. On one hand, the amount of bytes deleted
is much smaller than the total amount of bytes cre-
ated, which partly explains the exponential growth of
OneDrive’s storage consumption. On the other hand,
the percentage and amount of bytes deleted is non-trivial.
This suggests that removing the deleted objects from un-
derlining cloud storage and reclaiming capacity is crucial
in achieving storage efficiency.

2.3 Giza Trade-offs
Giza offers flexible trade-offs in terms of storage cost
and cross-DC network traffic, as summarized in Table 1.
Although we cannot discuss the details of how Giza’s
trade-offs translate to overall cost reduction, our internal
calculation indicates that Giza leads to savings of many
millions of dollars annually for OneDrive alone.

‡The distribution curve is cut off at the right end, where the age
of objects exceeds one year.

USENIX Association 2017 USENIX Annual Technical Conference    541



Geo-Rep. Giza
# of DCs 2 3 5 7
Erasure coding - 2 + 1 4 + 1 6 + 1
Storage overhead 2.6 1.9 1.6 1.5
Cost savings - 27% 38% 42%
cross-DC traffic (put) 1x 1x 1x 1x
cross-DC traffic (get) 0 0.5x 0.75x 0.83x
DC rebuild 1x 2x 4x 6x

Table 1: Giza Trade-offs

Storage Cost: To tolerate single DC failure, geo-
replication incurs the storage overhead of 2 × 1.3 = 2.6
(with single DC storage overhead at 1.3 [20]). With k+1
erasure coding, where k ranges from 2 to 6, Giza reduces
the storage overhead to between 1.9 and 1.5, increasing
cost savings from 27% to 42%. The storage cost savings
come with inflated cross-DC traffic, examined below.
Cross-DC Traffic: For writes, Giza consumes same

cross-DC traffic as geo-replication. With k + 1 erasure
coding, an object is encoded into k +1 fragments, where
one fragment is stored in a local DC and the rest k in
remote DCs. Hence, the ratio between cross-DC traffic
and object size is k/k = 1, same as geo-replication. For
reads, however, Giza consumes more cross-DC traffic. k
fragments are required, where one is from the local DC
and the rest k − 1 from remote DCs. Hence, the ratio
between cross-DC traffic and object size is (k − 1)/k,
which increases with k. In comparison, geo-replication
serves reads entirely from the local DC and incurs no
cross-DC traffic. However, as discussed in Sec ??, the
cross-DC read traffic can be cut down significantly with
caching. Upon data center failure, Giza needs to rebuild
lost data through erasure coding reconstruction, which
requires k bytes of cross-DC traffic to reconstruct one
byte of data. Geo-replication simply replicates every
object and thus incurs 1× of cross-DC traffic.
Alternative Approach: Giza stripes individual ob-

jects across multiple DCs. This design leads to cross-
DC traffic when serving reads. An alternative design is
to first aggregate objects into large logical volumes (say
100GB) and then erasure code different volumes across
multiple DCs to generate parity volumes [30]. Since
every object is stored in its entirety in one of the DCs,
cross-DC traffic is avoided during reads.
This design works great when objects are never

deleted [30]. However, Giza must support deletion.
Deleting objects from logical volumes (and canceling
them fromcorresponding parity volumes)would result in
complex bookkeeping and garbage collection, greatly in-
creasing system complexity. In comparison, Giza keeps
its design simple and relies on caching to drastically re-
duce the cross-DC traffic of reads to much lower than
that of writes.

3 Design
This section presents the design of Giza, including the
overall architecture, the data model, and the protocols
for the put, get, and delete operations.

3.1 Overview and Challenges

Giza

DC-1
object store

DC-1
table store

DC-1

DC-2

DC-2
object store

DC-2
table store

DC-3

DC-3
object store

DC-3
table store

W
rit

e 
a

Write b

Write p

P
ut

(k
,v

)

Create coded fragments 
{a, b, p} from v 

Replicate and update 

k→ {a, b, p}

Update and replicate 
k→ {a, b, p}

Update and replicate k→ {a, b, p}

Figure 3: Giza architecture

Architecture Giza is a global-scale cloud storage sys-
tem that spans across many data centers. It stores muta-
ble, versioned objects. Figure 3 shows the architecture
of Giza, which uses existing single-DC object and table
stores. Giza stores an object through a put operation,
consisting of a data operation and a metadata operation.
These operations are executed in parallel to improve per-
formance. On the data path, Giza splits and encodes
the object into data and parity fragments. Each coded
fragment is named by a unique identifier and stored in
a different DC. Each update to the object creates a new
version. The version numbers and the coded fragment
IDs in each version constitutes the metadata of the ob-
ject. On the metadata path, Giza replicates the metadata
across the data centers.

Giza is implemented on top of the existing Azure Stor-
age infrastructure. It stores the coded fragments in Azure
Blob storage and the metadata in Azure Table storage.
This layered approach provides two advantages. First,
doing so allows the rapid development of Giza by re-
using mature, deployed, and well-tested systems. Sec-
ond, it simplifies the failure recovery and deployment:
Giza runs on stateless nodes and can be readily integrated
with the rest of the stateless cloud storage front-ends.
Layering is commonly used in cloud infrastructure. For
example, Percolator [32] supports transactions by layer-
ing over a fault-tolerant distributed table store.

Technical Challenges In Giza, each coded fragment is
named by a unique identifier. As a result, fragments are
immutable, which simplifies the data path.

The metadata path is more tricky, facing three main
technical challenges:

542    2017 USENIX Annual Technical Conference USENIX Association



1. Building a strongly consistent, geo-replicated meta-
data store out of existing single-DC cloud tables.
Giza runs on stateless nodes and leverages exist-
ing well-tested cloud storage infrastructure to per-
sist all data and metadata. The architecture simpli-
fies development, deployment, and operation. This
makes Giza quite different from other systems oper-
ating stateful servers (e.g., Cassandra, Megastore,
Spanner, etc.). In addition, the cloud tables only
guarantee consistency within single data center.
Giza needs to orchestrate a collection of individ-
ual cloud tables across multiple data centers and
achieve strong consistency globally.

2. Jointly optimizing the data and metadata paths to
achieve a single cross-DC round trip for read/write
operations. Most existing systems employ a
primary-based approach, which incurs extra cross-
DC round trip for secondary data centers. Giza,
on the other hand, is leaderless and combines the
data and metadata path in such a way that achieves
single cross-DC round trips for both read and write
from any data center.

3. Performing garbage collection efficiently and
promptly. When a data object is deleted or its old
versions are garbage collected, Giza must remove
obsolete fragments and/or metadata from the under-
lying cloud blob and table storage. This turns out
to be non-trivial because Giza’s garbage collection
mechanism must be able to handle data center fail-
ures while ensuring data consistency and durability.

3.2 Paxos using Cloud APIs
To address the above challenges, Giza adaptswell-known
distributed algorithms - Paxos and Fast Paxos - in a novel
way on top of Azure Table.

3.2.1 Paxos and Fast Paxos in Giza: A Brief Primer

The Paxos algorithm [24] provides a mechanism to reach
consensus among a set of acceptors and one or more
proposers. A proposer initiates a Paxos voting process by
first picking a distinguished ballot. All ballots are unique
and can be compared to each other. The proposer sends
requests and proposed values to the acceptors. Each
acceptor decides whether to accept a request based on
its own state. A proposed value is committed when it is
accepted by a quorum of the acceptors. The acceptors
update their states when a request or value is accepted.
Paxos is typically implemented via active acceptors,

which are capable of comparing the ballot of incoming
requests with their own states and deciding whether to
accept the requests. Giza works differently and uses the
cloud tables as the acceptors. It implements the accep-
tor logic leveraging Azure Table’s atomic conditional
update capability.

Known 
committed 
version

... Highest 
ballot# 
seen

Highest 
accepted 
ballot

Highest 
accepted 
value

...

version Kversion K-1 version K+1

Figure 4: For each object, Giza stores the Paxos pro-
tocol state and the object metadata in a single row in
the underlying cloud table.

Paxos takes 2 phases to reach consensus, where phase
1 prepares a ballot and phase 2 commits a value. Each
phase takes 1 round trip, so applyingPaxos inGiza results
in 2 cross-DC round trips for the metadata path.

Fast Paxos [23] is a variation of Paxos that optimizes
the performance over cross-DC acceptors. It employs
two types of rounds: fast round and classic round. A fast
round sends a PreAccept request and takes a single round
trip to commit a value. A classic round resembles the two
phases in Paxos and takes two round trips. The fast round
in Fast Paxos requires a larger quorum. With 3 acceptors,
a value is committed only when it is accepted by all the
3 acceptors (quorum size of 3). In comparison, Paxos is
able to commit the value with 2 out of the 3 acceptors
(quorum size of 2). The advantage of Fast Paxos is that
when all the 3 acceptors respond, the value is committed
in a single round trip. The requirement of larger quorum
fits Giza perfectly, as Giza data path already requires
storing fragments in 3 or more data centers.

Giza implements both Paxos and Fast Paxos. This pa-
per discusses Fast Paxos only as its implementation re-
quires more care (but achieves lower latency) than Paxos.

3.2.2 Metadata Storage Layout

Giza needs to persist the Paxos states together with the
metadata for an object in the cloud table. We use one
table row per object, with a dynamic number of columns,
where each version of the object takes three columns.
The layout of each table row is shown in Figure 4.

Each version is represented by a consecutive natu-
ral numbers, starting from 1. Every Giza write to the
object creates a new version. For each version, Giza
initiates a separate Paxos instance and uses Paxos to
guard against races from concurrent writes and cloud
table failures. The metadata of all versions and the
states of all the Paxos instances are stored in the same
table row. Specifically, the metadata contains a triplet
of columns for each version (Figure 4). Two of the
columns are Paxos states: highest ballot seen
and highest accepted ballot. The other col-
umn, highest accepted value, stores the meta-
data, including the erasure coding scheme, the unique
fragment IDs, and DCs that holds the fragments.

Giza additionally maintains a set of known
committed versions for all those that have been

USENIX Association 2017 USENIX Annual Technical Conference    543



successfully committed. This is to facilitate both put and
get operations, as discussed in the following sections.

3.2.3 Metadata Write - Common Case

The metadata path begins by choosing a proper new ver-
sion number to initiate a Fast Paxos instance. Since
version numbers need to be consecutive, the new version
should succeed the most recently committed version.
Giza identifies a proper version number in an optimistic
fashion. Specifically, it reads known committed
versions from the table in its local DC, then uses
the next higher number as the new version number. In
the uncommon case that the newly chosen version num-
ber has already been committed (but this DC missed the
corresponding commit), the commit attempt would fail.
Through the process, Giza learns the committed versions
from the remote DCs, which allows it to choose a correct
version number for retry.
Following Fast Paxos, Giza sends a PreAccept request

to all the cloud tables, each located in a different DC.
Each request is an atomic conditional update on the table
row of the object. If there are no competing writes of
the same object, the PreAccept request will succeed in
updating the row. Otherwise, the PreAccept request will
be rejected by the table and leave the row unchanged.
Whenever Giza receives a fast quorum of positive

PreAccept responses, the corresponding version is con-
sidered to have been committed. Giza asynchronously
sends aCommit confirmation to all the cloud tables to up-
date the set of known committed versions to in-
clude the recently committed version. The Commit con-
firmation is again an atomic conditional update, which
only succeeds if the version number is not yet included
in the current set.
Since the Commit confirmation is completed asyn-

chronously, the critical path only involves the PreAccept
request and response. Hence, without conflict, the above
described metadata write involves only one cross-DC
round trip and is referred to as the fast path.

3.2.4 Metadata Write with Contention

The fast path may fail when Giza fails to collect a fast
quorumof positive PreAccept responses. Thismay result
from concurrent updates to the same object (contention),
or because one or more cloud tables fail. In this case,
Giza enters what is referred to as a slow path to perform
classic Paxos in order to guarantee safety.
On the slow path, Giza first picks a distinguished ballot

number and then replicates a Prepare request to write the
ballot to all the metadata tables and wait for a majority of
responses. The Prepare request is an atomic conditional
update operation. The operation succeeds only if the
highest ballot seen is no more than the ballot
in the Prepare request. The operation also returns the

entire row as a result.
Upon collecting a majority of successful replies, Giza

needs to pick a value to commit. The rule for picking
the value is categorized into three cases. In case 1,
Giza looks for the highest accepted ballot in the replies.
If there is one, the value from the reply is picked. In
case 2, the replies contain no accepted value, but rather
pre-accepted values. Giza picks the pre-accepted value
returned by themaximum responses in the quorum. Both
case 1 and 2 imply the possibility of an ongoing Paxos
instance, so Giza picks the value so as to complete the
Paxos instance first. It then starts with a new version and
follows the fast path to commit its current metadata. In
case 3, there is neither pre-accepted nor accepted value,
which implies no real impact from contention. Giza
picks its current metadata as the value and proceeds to
the next steps.

Once Giza picks the value, it replicates an Accept
request to all the metadata tables. The accept re-
quest is again an atomic conditional update; it suc-
ceeds in writing highest accepted ballot and
highest accepted value if neither highest
ballot seen nor highest accepted ballot
is larger. As soon as a majority of Accept requests suc-
ceed, Giza considers the corresponding metadata write
completed and sends acknowledgment to clients. Ad-
ditionally, a Commit confirmation is replicated in the
background, as described before.

3.2.5 Metadata Read

To get themetadata of the latest object version, it is insuf-
ficient for Giza to only read the corresponding metadata
table row from its local DC. This is because the local
DC might not be part of the majority quorum that has
accepted the latest version. To ensure correctness, Giza
needs to read the metadata rows frommore than one DC.

In the common case, known committed
versions is up-to-date and includes the latest
committed version (say version k). Giza reads version
k from the metadata table row in a local DC. It then
confirms the lack of higher committed versions than k,
from the metadata table row in a non-local DC. Hence,
in the case that the metadata is replicated to 3 DCs, the
metadata from 2 DCs (one local and one non-local)
leads to a decisive conclusion that version k is the latest
committed version. It is therefore safe for Giza to return
version k to clients.

In general, Giza reads the metadata table rows from
all the DCs. Whenever a majority rows have match-
ingknown committed versions and have not ac-
cepted any value for a higher version, Giza returns the
metadata of the highest committed version.

If the replies contain an accepted value with a
higher version number than the known committed

544    2017 USENIX Annual Technical Conference USENIX Association



versions, Giza needs to follow a slow path similar to
the one in the write operation. This is to confirmwhether
the higher version has indeed been committed.

3.3 Joint Optimization of Data and Meta-
data Operations

The naive version of Giza first writes out fragments (data
and parity), and then writes out metadata, resulting in
two or more cross-DC round trips. To reduce latency,
we optimize Giza to execute the data and metadata paths
in parallel. This is potentially problematic because either
the data or metadata path could fail while the other one
succeeds. Below, we describe how put and get cope with
this challenge and ensure end-to-end correctness.
The put Operation: After generating the coded frag-

ments, Giza launches the data and metadata paths in par-
allel. In the common case, Giza waits for both the data
and the metadata paths to finish before acknowledging
clients as well as replicating the commit confirmation.
In other words, Giza ensures that known committed
versions only include those whose data and metadata
have both been successfully committed.
In one uncommon case, the data path succeeds, while

the metadata path fails. Now, the fragments stored in the
cloud blobs become orphans. Giza will eventually delete
these fragments and reclaim storage through a cleaning
process, which first executes Paxos to update the current
version to no-op, discovers the orphan fragments as not
being referenced in the metadata store, and then removes
the fragments from the corresponding blob storage in all
the DCs.
In another uncommon case, the data path fails, but

the metadata path succeeds. This subtle case creates a
challenge for the get operation, as addressed next.
The get Operation: A naive way to perform get is

to first read the latest metadata and then retrieve the
fragments. To reduce latency, Giza chooses an opti-
mistic approach and parallelizes the metadata and the
data paths.
For a get request, Giza first reads the metadata table

row from a local DC. It obtains known committed
versions, as well as the names and locations of the
fragments of the latest version. Giza immediately starts
reading the fragments from the multiple data centers.
Separately, it launches a regularmetadata read to validate
that the version is indeed the latest. If the validation fails,
Giza realizes there is a newer version. It in turn has to
redo the data path by fetching a different set of fragments.
This results in wasted efforts in its previous data fetch.
Such potential waste, however, only happens when there
is concurrent writes on the same object, which is rare.
Because the data and metadata paths are performed

in parallel during put, it is possible (though rare) that
the fragments for the latest committed version have not

been written to the blob storage at the time of read. This
happens if themetadata path in the put finishes before the
data path, or the metadata path succeeds while the data
path fails. In such case, Giza needs to fall back to read the
previous version, as specified in known committed
versions.

3.4 Deletion and Garbage Collection

The delete operation in Giza is treated as a special update
of the object’smetadata. When receiving a delete request
(for either the entire object or specific versions), Giza
executes the metadata path and writes a new version
indicating the deletion. As soon as the metadata update
succeeds, the deletion completes and is acknowledged.

The storage space occupied by deleted ver-
sions/objects is reclaimed through garbage collection.
Giza garbage collection deletes the fragments from the
blob storage and truncates the columns of the deleted
versions from the metadata table row. It follows three
steps: 1) fetching the metadata corresponding to the ver-
sion to be garbage collected, 2) deleting the fragments
in the blob storage, and 3) removing the columns of the
deleted version from the metadata table row. The second
step has to occur before the third one in case that the
garbage collection process is interrupted and the frag-
ments may become “orphans” without proper metadata
pointing to them in the table storage.

Once all the versions of the object are deleted and
garbage collected, Giza needs to remove the correspond-
ing metadata table rows from all the DCs. This requires
extra care, due to possible contention from a new put
request. If the metadata table rows are removed bru-
tally, the new put request may lead the system into an
abnormal state. For instance, the put request could start
at a data center where the metadata table row has al-
ready been removed. Giza would therefore assume that
the object never existed and choose the smallest version
number. Committing this version number is dangerous
before the metadata table rows are removed from all the
DCs, as this may result in inconsistency during future
failure recovery.

Therefore, Giza resorts to a two-phase commit proto-
col to remove the metadata table rows. In the first phase,
it marks the rows in all the DCs as confined. After
this any other get or put operations are temporarily dis-
abled for this object. In the second phase, all the rows
are actually removed from the table storage. The disad-
vantage of this approach is obvious. It requires all the
data centers to be online. Data center failure or network
partition may pause the process and make the row un-
available (but can still continue after data center recovers
or network partition heals).

USENIX Association 2017 USENIX Annual Technical Conference    545



4 Failure Recovery

Giza needs to cope with transient or permanent data cen-
ter failures. Since Giza treats an entire data center as a
fault domain, failures within a data center (server fail-
ures, network failures, etc...) are resolved by individual
cloud object store and table store within each data center.

Transient DC failure: We broadly categorize tran-
sient DC failure to include temporary outages of the
blob and table storage service in a DC. Transient DC
failure may be caused by a temporary network partition
or power failure. By design, Giza can still serve get
and put requests, albeit at degraded performance. For
example, when handling put requests, Giza may take
more than one cross-DC round trip, because some of the
DCs replicating the metadata are unavailable, resulting
in fewer DCs than required for a fast path quorum.

When a data center recovers from transient failures, it
needs to catch up and update the fragments in its blob
storage and the metadata rows in its table storage. The
process follows the Paxos learning algorithm [24]. For
each object, Giza issues a read request of the meta-
data without fetching the fragments. If the local ver-
sion matches the committed version, nothing needs to
be done; if the local version is behind, the recovering
process reads the fragments of all missing versions, re-
constructs corresponding missing fragments and stores
them in the blob storage, as well as updates the metadata
row in the table storage.

Permanent DC Failure: Although extremely rare, a
DC may fail catastrophically. The blob and table service
within the DC may also experience long-term outages.
We categorize these all as permanent DC failure.

Giza handles permanent DC failure by employing log-
ical DC names in storage accounts. The mapping be-
tween a logical DC name to a physical DC location is
stored in a separate service external to Giza. Upon a
permanent DC failure, the same logical DC name is re-
mapped from the failed DC to a healthy replacement.
Giza metadata records logical DC names and therefore
remains unchanged after the re-mapping. This is similar
to DNS, where same domain name can be re-mapped to
a different physical IP address. This way of handling
failure is also reported in Chubby [8].

Upon the permanent DC failure, Giza launches recov-
ery coordinators to reconstruct the lost fragments and
re-insert the metadata rows in the replacement DC. The
procedure is similar to how Giza handles transient fail-
ures yet may last longer. The reconstruction is paced and
prioritized based on demand, with sufficient cross-DC
network bandwidth in-place to ensure timely recovery.

Coding Data and Metadata DCs Ping (max)
US-2-1 2 + 1 US(3/3) 46 ms
US-6-1 6 + 1 US(7/3) 71 ms

World-2-1 2 + 1 US(1/1), EU(1/1), JP(1/1) 240 ms
World-6-1 6 + 1 US(3/1), EU(2/1), JP(2/1) 241 ms

Figure 5: Giza Configuration ( US(7/3) represents 7
DCs for data and 3 DCs for metadata, all in the US. )

5 Implementation
Giza is implemented inC++ and usesAzureBlob andTa-
ble storage to store fragments and metadata. The global
footprint of Azure Storage allows for experimenting with
a wide range of erasure coding parameters.

The Giza design relies on atomic conditional write.
For Azure Table, we leverage its ETag mechanism. An
unique ETag is generated by the table service for every
write. To implement an atomic conditional write, a Giza
node first reads the ETag of a table row. It then performs
the condition check and issues the write request together
with the ETag. Azure Table rejects the write request if
the ETag in the request does not match the one in the
table, which could only occur due to a concurrent write
to the row.

To minimize latency, the Giza node delegates its con-
ditional write requests to remote Giza nodes, which re-
side in the same DCs as the tables and act as proxies in
reading the ETag and writing the local table row.

5.1 Experimental Setup
We run experiments using four configurations: US-2-1,
World-2-1, US-6-1, and World-6-1. Figure 5 describes
the data centers participating in each configuration, and
the max ping latency between the DCs. Unless explicitly
stated, all experiments erasure code objects of 4MB, the
dominating size in our target workloads.

We also compareGizawithCockroachDB [9], an open
source implementation of Google spanner. Our Cock-
roachDB experiments use the US-2-1 configuration, as
CockroachDB doesn’t yet support world wide replica-
tion. In every data center, we run three CockroachDB
instances for local DC replication. Each CockroachDB
writes to a dedicated HDD with no memory caching.
We have configured the CockroachDB instances follow-
ing the recommended production setting by the Cock-
roachDB developers. For example, we run NTP to syn-
chronize clocks of the different CockroachDB instances.

6 Evaluation
For evaluation, we deploy Giza on top of the Microsoft
Azure platform across 11 data centers (7 in North Amer-
ica, 2 in Europe and 2 in Asia). Giza nodes are Azure
virtual machines with 16 cores, 56 GB of RAM, and
Gigabit Ethernet. As describe in Section 3, all the Giza
nodes are stateless. For each Giza storage account, a lo-

546    2017 USENIX Annual Technical Conference USENIX Association



Fast
US-2-1
West1

Classic Fast
US-2-1
Central

Classic Fast
US-2-1

South Central

Classic Fast
World-2-1

Europe

Classic Fast
World-2-1

US

Classic Fast
World-2-1

Asia

Classic
0
50
100
150
200
250
300
350
400
450

La
te

nc
y(

m
s)

Query Version Latency
Table Latency
Transfer Latency

Figure 6: Fast Paxos and Classic Paxos Comparison

Serial
(Classic)

Serial
(Fast)

Giza Giza
(Data Only)

Azure
(LR)

0

200

400

600

800

1000

1200

La
te

nc
y(

m
s)

(a) Put

Serial Giza Giza
(Data Only)

Azure
(LR)

0

200

400

600

800

1000

1200

La
te

nc
y(

m
s)

(b) Get

Figure 7: Giza Overall Latency

cally redundant Azure Blob and Table storage account is
created in every DC. Upon receiving get or put requests,
the Giza nodes execute the data and the metadata paths
to read or write objects.

6.1 Metadata Latency
We implement Giza’s metadata path with both Classic
and Fast Paxos. Here, we compare the performance of
the two algorithms and examine their effects on Giza’s
metadata path latency. Figure 6 presents the metadata
latencies and breakdowns for both US-2-1 and World-2-
1 configurations. The results include running proposers
in each of the DCs.
The metadata latency consists of three parts: query

version latency, transfer latency, and table latency. The
query version latency is determined by reading the possi-
ble highest version from the proposer’s local table. This
request is not part of the concensus protocol and is the
same for both Fast and Classic Paxos. The transfer la-
tency is the amount of time spent on network communi-
cation between the proposer and the furthest Giza proxy
in a Paxos quorum. Here, the latency of Classic Paxos,
which incurs two cross-DC round trips, is not strictly
twice as much as the latency of Fast Paxos. This is be-
cause the Classic Paxos quorum is smaller than the Fast
Paxos quorum. As a result, the distance between the
proposer and the furthest proxy is smaller in a Classic
Paxos quorum. The table latency is the latency for a Giza
proxy to conditionally update its local DC table. Since
Classic Paxos requires two rounds and hence two table
updates, its table latency is twice that of Fast Paxos.
For the US-2-1 configuration, we observe that the

metadata latency is dominated by table latency. In this
case, Fast Paxos is much faster than Classic Paxos, re-
gardless of the proposer’s location.
For the World-2-1 configuration, transfer latency be-

comes a substantial part of the overall metadata latency.
In this case, despite of taking two cross-DC round trips,
the Classic Paxos implementation can have lower trans-
fer latency. Nevertheless, the table latency of Classic
Paxos is still twice that of Fast Paxos. As a result, the
Fast Paxos implementation has lower latency, regardless
of the proposer’s location.

6.2 Giza Latency
The design of Giza went through multiple iterations and
this section illustrates the performance gain for each it-
eration. For the interest of space, we focus on theWorld-
2-1 configuration. All latency results include error bars
representing the 10th and 95th percentile.

6.2.1 Giza Put Latency

Figure 7a shows the Giza overall put latency for 4MB
data. We compare Giza with its two previous itera-
tions where the metadata path is not parallelized with
the data path. In the first iteration, Giza runs the data
path first. After completing the data path, Giza runs the
metadata path with the Classic Paxos implementation.
In the second iteration, we replaced Classic Paxos with
Fast Paxos, improving latency performance. Giza paral-
lelizes metadata path with data path, which can results
in extra metadata or data clean up if either path fails to
complete. However, the performance gain is significant.
We also included a baseline which is the time it takes a
proposing data center to issue a blob store request to the
farthest data center in the quorum. Finally, we include
the latency for storing the 4MB data directly to Azure
storage, which is locally replicated.

The results show that Giza’s performance beats the
other two alternatives in the common case and has closest
latency to the baseline. The median latency of Giza’s
put is 374 ms, only 30 ms higher than the baseline. This
is due to the latency of erasure coding 4MB data. On the
other hand, the serial Paxos version takes 852 ms, and
the serial Fast Paxos version takes 598 ms. In summary,
the latency cost for tolerating data center failure with
Giza is a little more than 3 time that of local replication.

6.2.2 Giza Get Latency

Figure 7b shows Giza’s get performance comparison.
The alternative design here is the non-optimistic get
where the most current version for a blob is not assumed
to be stored in the current data center. Hence, the meta-
data path and data path are executed sequentially, taking
419 ms. Giza’s optimistic get, which runs the metadata
path and data path in parallel, takes 223ms. Giza’s get
latency is higher than the baseline by 33 ms. The perfor-

USENIX Association 2017 USENIX Annual Technical Conference    547



us-2-1 us-6-1 world-2-1 world-6-1
0

50

100

150

200

250

300

350

400

450
La

te
nc

y(
m

s)

(a) Put

us-2-1 us-6-1 world-2-1 world-6-1
0

50

100

150

200

250

300

350

La
te

nc
y(

m
s)

(b) Get

Figure 8: Performance for Giza in different setups

Contention No Contention One Drive
0

200

400

600

800

1000

1200

La
te

nc
y(

m
s)

Figure 9: Contention vs No Contention

mance gap between Giza and baseline is higher because
Giza needs to do a local table retrieval first before start-
ing the datapath. In addition, it needs to decode the data
fragments. Here the latency cost of erasure encoding on
the read path with Giza is roughly twice that of reading
from a locally redundant Azure storage.

6.3 Footprint Impact
Giza offers customers the flexibility to choose the set of
data centers, as well as the erasure coding parameters
(e.g., the number of data fragments k). It turns out that
increasing k not only reduces storage overhead, but also
overall latency. This is because the latency in Giza is
often dominated by the data path. Erasure coding with
a larger k results in smaller fragments and fewer bytes
stored in each DC’s blob storage. This reduces the data
path latency and in turn the overall latency.
Figure 8a and Figure 8b present the latency impact

given differentGiza footprints and erasure coding param-
eters. All the requests are generated from US-Central.
Comparing US-2-1 to US-6-1 (World-2-1 toWorld-6-1),
it is clear that increasing k from 2 to 6 reduces the latency
for both put and get.

6.4 Comparing Giza with CockroachDB
Ideally, we would like to compare Giza with an existing
storage system with similar functionalities. However,
there is no off-the-shelf erasure coded system. Hence,
we implemented Giza on top of CockroachDB using its
transaction support. To do this, we create four different
tables in CockroachDB: one metadata table and three
data tables (for storing coded fragments). The metadata
table is replicated across all three DCs. Each of the data
tables is replicated three times within its respective data
center. This is to match the local replication of Azure
Table within individual DCs.
We implement Giza’s put as a transaction consisting of

storing each coded fragment at the corresponding data ta-
ble and storing the metadata information in the metadata
table. Since CockroachDB is not optimized for storing
large objects, we evaluate the performance of puts on
128KB objects. The median put latency of 128KB ob-
jects under CockroachDB is 333ms, much higher than

that of Giza (<100ms).
We implement Giza’s get as a transaction consisting

of reading the metadata from the metadata table and two
coded fragments from the data tables. The median get
latency under CockroachDB is lower than that of Giza by
20%. This is because CockroachDB directly reads from
local HDD, which is faster than Giza reading fromAzure
storage. To demonstrate this, we equalize the storage
layer to substitute Azure latency with local HDD latency.
Indeed, Giza’s performance with equalized storage is
slightly better than that of CockroachDB.

6.5 Giza Contention
Giza is optimized for low contention workloads. So,
it employs a simple strategy for handling contention.
In the event of contention, a Giza node that fails the
fast round falls back to a classic round. In addition,
Giza implements exponential back-off with the latency
starting from the median cross-DC latency whenever
prepare phase or accept phase further fails.

Figure 9 compares the performance of Giza driven by
the OneDrive trace to that with no contention at all. In
the OneDrive trace, only 0.5% of updates are concurrent
(within 1 second interval). Hence, it is not surprising
that the performance of Giza driven by the OneDrive
trace is almost identical to that with no contention.

Figure 9 also presents the latency results of adversary
contention. In this case, two Giza nodes within the same
data center are issuing back-to-back concurrent puts to
update the same object. This is definitely not the scenario
that Giza targets. We include the results merely for the
interest of our readers.

7 Related Work
Erasure Coding in Cluster Storage: Erasure coding
has long been applied in many large-scale distributed
storage systems [34, 41, 16, 1, 38, 35, 40], including
productions systems at Facebook [6], Google [13, 14]
and Microsoft Azure [20]. These solutions generalize
the RAID approach [31, 39] to a distributed cluster set-
ting. Giza is unique in synchronously replicating era-
sure coded data across WAN and minimizing cross-DC
latency. In addition, Giza provides globally consistent

548    2017 USENIX Annual Technical Conference USENIX Association



put and get with versioning support.
Erasure Coding in Wide Area Storage: HAIL [7],

OceanStore [22, 33], RACS [2], DepSky [5] and NC-
Cloud [19] all stripe and erasure code data at a global
scale.
HAIL [7] is designed to withstand Byzantine adver-

saries. OceanStore [22, 33] assumes untrusted infras-
tructure and serializes updates via a primary tier of repli-
cas. Giza operates in a trusted environment.
RACS [2] and DepSky [5] address conflicts caused by

concurrent writers using Apache ZooKeeper [21], where
readers-writer locks are implemented at per-key granu-
larity for synchronization. Giza, on the other hand, im-
plements consensus algorithms for individual keys and
achieves strong consistency without centralized coordi-
nators. In addition, Giza employs a leaderless consensus
protocol. Updates may originate from arbitrary data
centers and still complete with optimal latency without
being relayed through a primary.
NCCloud [19] implements a class of functional re-

generating codes [11] that optimize cross-WAN repair
bandwidth. Giza employs standard Reed-Solomon cod-
ing and leaves such optimization to future.
Facebook f4 [30] is a production warm blob storage

system. It applies erasure coding across data centers
for storage efficiency. As discussed in Section 2.3, f4
avoids the deletion challenge by never truly deleting data
objects. Whenever a data object is deleted, the unique
key used to encrypt the object is destroyed while the en-
crypted data remains in the system. This simplification
suits Facebook very well, because its deleted data only
accounts for 6.8% of total storage and Facebook could
afford not to reclaim the storage space [30]. This, un-
fortunately, is not an option for Giza, as our workloads
show much higher deletion rate. Not reclaiming the
physical storage space from deleted data objects would
result in significant waste and completely void the gain
from cross-DC erasure coding. Furthermore, not physi-
cally deleting customer data objects - even if encrypted
- wouldn’t meet the compliance requirements for many
of our customers.
Separating Data and Metadata: It is common for a

storage systems to separate data and metadata path, and
design a separate metadata service to achieve better scal-
ability, e.g., FARSITE [3] and Ceph [37]. Gnothi [36]
replicates metadata to all replicas while data blocks only
to a subset of the replicas. Cocytus [40] is a highly
available in-memory KV-store that applies replication
to metadata and erasure coding to data so as to achieve
memory efficiency. Giza follows a similar design path,
and store data in commodity cloud blob storage andmeta-
data in commodity NoSQL table storage.
Consistency in Global Storage: Megastore [4] and

Spanner [10] appliesMulti-Paxos tomaintain strong con-

sistency in global databases. Both of them requires two
round trips for a slave site to commit. Mencius [25]
takes a round-robin approach for proposers in different
sites, amortizing commit latency. EPaxos [29] uses fine-
grained dependency tracking at acceptor-side to ensure
low commit latency for both non-contended and con-
tended requests. In comparison, Giza takes a refined
approach based on FastPaxos [23], separating metadata
and data path before committing. This design choice
allows Giza to serve most requests still in single cross-
DC round trip while keeping servers stateless, using the
limited ability of table service. Metasync [17] imple-
ments Paxos using the append functionality provided by
cloud file synchronization services such as DropBox,
OneDrive. By contrast, Giza implements Paxos using
conditional-write APIs of cloud tables. The latter leads
to a more efficient implementation as clients do not need
to download and process logs from the cloud storage in
order to execute Paxos.

8 Conclusion
In this paper, we present the design and evaluation of
Giza – a strongly consistent, versioned object store that
encodes objects across global data centers. Giza imple-
ments the Paxos consensus algorithms on top of existing
cloud APIs and have separate data and metadata paths.
As a result, Giza is fast in normal operation for our tar-
get workloads. Our evaluation of Giza on a deployment
over 11 DCs across 3 continents demonstrates that Giza
achieves much lower latency than naively adopting a
globally consistent storage system.

Acknowledgments
We thank Andy Glover, Jose Barreto, Jon Bruso, Ron-
akkumar Desai, Joshua Entz from the OneDrive team for
their many contributions. Special thanks go to Jeff Irwin
for his contributions that helped enable Giza. We also
thank all of the members of the Azure Storage team for
invaluable discussions and iterations, as well as Taesoo
Kim and anonymous reviewers for their insightful feed-
back. This work was partially supported by ONR grant
N00014-16-1-2154.

References
[1] M. Abd-El-Malek, W. V. Courtright II, C. Cranor,

G. R. Ganger, J. Hendricks, A. J. Klosterman, M. P.
Mesnier, M. Prasad, B. Salmon, R. R. Sambasivan,
et al. Ursa minor: versatile cluster-based storage. In
Proceedings of USENIXConference on File and Storage
Technologies (FAST). Dec. 2005.

[2] H. Abu-Libdeh, L. Princehouse, and H. Weather-
spoon RACS: a case for cloud storage diversity. In
Proceedings of ACM Symposium on Cloud Computing
(SoCC). June 2010.

USENIX Association 2017 USENIX Annual Technical Conference    549



[3] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R.
Chaiken, J. R. Douceur, J. Howell, J. R. Lorch, M.
Theimer, and R. P. Wattenhofer FARSITE: Feder-
ated, available, and reliable storage for an incompletely
trusted environment. InProceedings ofUSENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI). Dec. 2002.

[4] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khor-
lin, J. Larson, J.-M. Léon, Y. Li, A. Lloyd, and
V. Yushprakh Megastore: providing scalable, highly
available storage for interactive services. InProceedings
of Biennial Conference on Innovative Data Systems Re-
search (CIDR). Jan. 2011.

[5] A. Bessani, M. Correia, B. Quaresma, F. André,
and P. Sousa DepSky: dependable and secure storage
in a cloud-of-clouds. In Proceedings of ACM European
Conference on Computer Systems (EuroSys). Apr. 2011.

[6] D. Borthakur, R. Schmidt, R. Vadali, S. Chen, and
P. Kling Hdfs raid. In Hadoop user group meeting.
2010.

[7] K. D. Bowers, A. Juels, and A. Oprea HAIL: a
high-availability and integrity layer for cloud storage.
In Proceedings of ACM Conference on Computer and
Communications Security (CCS). Nov. 2009.

[8] M. Burrows The Chubby Lock Service for Loosely-
Coupled Distributed Systems. In Proceedings of
USENIX Symposium on Operating Systems Design and
Implementation (OSDI). Nov. 2006.

[9] CockroachDB. http://www.cockroachlabs.
com/.

[10] J. C. Corbett, J. Dean,M.Epstein,A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser, P.
Hochschild, et al. Spanner: Google’s globally dis-
tributed database. In Proceedings of USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI). Oct. 2012.

[11] R. G. Dimakis, P. B. Godfrey, Y. Wu, M. O. Wain-
wright, and K. Ramch Network coding for dis-
tributed storage systems. In Proceedings of IEEE In-
ternational Conference on Computer Communications
(INFOCOM). 2007.

[12] Facebook and Microsoft to Build Fiber Optic Ca-
ble Across Atlantic. http : / / www . wsj . com /
articles/facebook-and-microsoft-to-
build - fiber - optic - cable - across -
atlantic-1464298853. May 2016.

[13] A. Fikes Storage architecture and challenges. Talk at
the Google Faculty Summit (2010).

[14] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A.
Truong, L. Barroso, C. Grimes, and S. Quinlan
Availability in globally distributed storage systems. In
Proceedings of USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI). Oct. 2010.

[15] A. Greenberg SDN for the cloud. In Keynote in the
2015 ACM Conference on Special Interest Group on
Data Communication. 2015.

[16] A. Haeberlen, A.Mislove, and P. Druschel Glacier:
Highly durable, decentralized storage despite massive
correlated failures. In Proceedings of USENIX Confer-
ence on Networked Systems Design and Implementation
(NSDI). May 2005.

[17] S. Han, H. Shen, T. Kim, A. Krishnamurthy, T. An-
derson, and D. Wetherall MetaSync: file synchro-
nization across multiple untrusted storage services. In
Proceedings of USENIX Conference on Annual Techni-
cal Conference (ATC). July 2015.

[18] M. P. Herlihy, and J. M. Wing Linearizability:
A correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
(TOPLAS) 12, 3 (1990), 463–492.

[19] Y. Hu, H. Chen, P. Lee, and Y. Tang NCCloud: apply-
ing network coding for the storage repair in a cloud-of-
clouds. In Proceedings of USENIX Conference on File
and Storage Technologies (FAST). Feb. 2012.

[20] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P.
Gopalan, J. Li, S. Yekhanin, et al. Erasure coding
in Windows Azure storage. In Proceedings of USENIX
Conference on Annual Technical Conference (ATC).
June 2012.

[21] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed
ZooKeeper: wait-free coordination for internet-scale
systems. In Proceedings of USENIX Conference on An-
nual Technical Conference (ATC). June 2010.

[22] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea, H.Weath-
erspoon, W. Weimer, et al. Oceanstore: An architec-
ture for global-scale persistent storage. In Proceedings
of ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS). Nov. 2000.

[23] L. Lamport Fast Paxos. Tech. rep. MSR-TR-2005-112.
Microsoft Research, 2005.

[24] L. Lamport Paxos made simple. ACM SIGACT News
32, 4 (2001), 18–25.

[25] Y. Mao, F. P. Junqueira, and K. Marzullo Mencius:
building efficient replicated state machines for WANs.
In Proceedings of USENIX Symposium on Operating
SystemsDesign and Implementation (OSDI). Dec. 2008.

[26] R. Mears, L. Reekie, S. Poole, and D. Payne Low-
threshold tunable CW and Q-switched fibre laser oper-
ating at 1.55 µm. Electronics Letters 3, 22 (1986), 159–
160.

[27] Microsoft Azure Regions. https : / / azure .
microsoft.com/en-us/regions/.

550    2017 USENIX Annual Technical Conference USENIX Association

http://www.cockroachlabs.com/
http://www.cockroachlabs.com/
http://www.wsj.com/articles/facebook-and-microsoft-to-build-fiber-optic-cable-across-atlantic-1464298853
http://www.wsj.com/articles/facebook-and-microsoft-to-build-fiber-optic-cable-across-atlantic-1464298853
http://www.wsj.com/articles/facebook-and-microsoft-to-build-fiber-optic-cable-across-atlantic-1464298853
http://www.wsj.com/articles/facebook-and-microsoft-to-build-fiber-optic-cable-across-atlantic-1464298853
https://azure.microsoft.com/en-us/regions/
https://azure.microsoft.com/en-us/regions/


[28] Microsoft, Facebook to lay massive undersea ca-
ble. http : / / www . usatoday . com / story /
experience / 2016 / 05 / 26 / microsoft -
facebook - undersea - cable - google -
marea-amazon/84984882. May 2016.

[29] I.Moraru, D. G. Andersen, andM.Kaminsky There
is more consensus in egalitarian parliaments. In Pro-
ceedings of ACM Symposium on Operating Systems
Principles (SOSP). Nov. 2013.

[30] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin,
W. Liu, S. Pan, S. Shankar, V. Sivakumar, L. Tang,
et al. f4: Facebook’s warm BLOB storage system.
In Proceedings of USENIX Symposium on Operating
Systems Design and Implementation (OSDI). Oct. 2014.

[31] D. Patterson, G. Gibson, and R. Katz A case for
redundant arrays of inexpensive disks (RAID). In Pro-
ceedings of ACM International Conference on Manage-
ment of Data (SIGMOD). June 1988.

[32] D. Peng, and F. Dabek Large-scale incremental pro-
cessing using distributed transactions and notifications.
In Proceedings of USENIX Symposium on Operating
Systems Design and Implementation (OSDI). Oct. 2010.

[33] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B.
Zhao, and J. Kubiatowicz Pond: the OceanStore pro-
totype. In Proceedings of USENIX Conference on File
and Storage Technologies (FAST). Mar. 2003.

[34] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and
S. Spence FAB: building distributed enterprise disk
arrays from commodity components. In Proceedings of
ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS). Oct. 2004.

[35] M. Sathiamoorthy, M. Asteris, D. Papailiopou-
los, A. G. Dimakis, R. Vadali, S. Chen, and D.
Borthakur Xoring elephants: Novel erasure codes
for big data. The Proceedings of the VLDB Endowment
(PVLDB) 6, 5 (Mar. 2013).

[36] Y.Wang, L. Alvisi, andM.Dahlin Gnothi: separating
data and metadata for efficient and available storage
replication. In Proceedings of USENIX Conference on
Annual Technical Conference (ATC). June 2012.

[37] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long,
andC.Maltzahn Ceph: A scalable, high-performance
distributed file system. In Proceedings of USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI). Nov. 2006.

[38] B. Welch, M. Unangst, Z. Abbasi, G. A. Gibson, B.
Mueller, J. Small, J. Zelenka, andB.Zhou Scalable
Performance of the Panasas Parallel File System. In
Proceedings of USENIXConference on File and Storage
Technologies (FAST). Feb. 2008.

[39] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan
The HP AutoRAID hierarchical storage system. ACM
Transactions on Computer Systems (TOCS) 14, 1 (Feb.
1996).

[40] H. Zhang, M. Dong, and H. Chen Efficient and avail-
able in-memory KV-store with hybrid erasure coding
and replication. In Proceedings of USENIX Conference
on File and Storage Technologies (FAST). Feb. 2016.

[41] Z. Zhang, S. Lin, Q. Lian, and C. Jin RepStore: a self-
managing and self-tuning storage backend with smart
bricks. In Proceedings of International Conference on
Autonomic Computing. 2004.

[42] B. Zhu, T. Taunay, M. Fishteyn, X. Liu, S. Chan-
drasekhar, M. Yan, J. Fini, E. Monberg, and
F. Dimarcello 112-Tb/s space-division multiplexed
DWDM transmission with 14-b/s/Hz aggregate spec-
tral efficiency over a 76.8-km seven-core fiber. Optics
Express 19, 17 (2011), 16665–16671.

USENIX Association 2017 USENIX Annual Technical Conference    551

http://www.usatoday.com/story/experience/2016/05/26/microsoft-facebook-undersea-cable-google-marea-amazon/84984882
http://www.usatoday.com/story/experience/2016/05/26/microsoft-facebook-undersea-cable-google-marea-amazon/84984882
http://www.usatoday.com/story/experience/2016/05/26/microsoft-facebook-undersea-cable-google-marea-amazon/84984882
http://www.usatoday.com/story/experience/2016/05/26/microsoft-facebook-undersea-cable-google-marea-amazon/84984882



